Poverty and Self-Control

Debraj Ray, NYU

with Doug Bernheim, Stanford, and Sevin Yeltekin, Carnegie Mellon
Two Approaches to the Study of Poverty

- **Constraints:**
 - absence of credit: low investments
 - absence of insurance: vulnerability to stochastic shocks
 - nonconvexity in feasible set (nutrition, health, education)

- **Psychology**
 - failed aspirations
 - lack of or biases in information
 - temptation, lack of self-control, inability to commit
Persistent Poverty as Traps

- Well-known literature on poverty traps based on constraints:
 - E.g., credit constraints or nutrition

- More recent emphasis on psychological traps:
 - aspirations failures

- We study the implication: poverty \Rightarrow limited self-control.
 - (the reverse implication being straightforward)
Three Examples

- Financial Markets
 - credit cards (Laibson 1997)
 - sub-prime mortgages
 - lending to women in microfinance (Pitt-Khandker 1995)
Three Examples, contd.

- **Investments**
 - Poor forego profitable *small* investments (survey in Banerjee-Dulfo 2011)
 - Duflo-Kremer-Robinson (2010) on fertilizer use in Kenya
 - de Mel-McKenzie-Woodruff (2008) on returns to microenterprise in Sri Lanka
Three Examples, contd.

- Public Distribution Debate
 - Public food distribution system in India
 - Huge debate on food versus cash transfers
 - Khera (2011) survey suggests principal aversion to cash comes from impulsive spending.
 - See also food stamp delivery in UK, Sri Lanka, or food distribution under PROGRESA/OPORTUNIDADES, Armendáriz and Morduch (2007).
Self-Control or Just Present Bias?

- (see also theory in Ambec and Treich (2007) and Basu (2010)).

- Duflo-Kremer-Robinson (2010): Fertilizer use in Kenya (adoption just after harvest)
Poverty and Self-Control:

- If self-control a fixed trait, policy outlook not good.

- Another possibility: poverty per se may damage self-control.

- Source of poverty traps that complements nonconvexities or aspirations failure.

- Policies that help the poor begin to accumulate assets may be highly effective, even if they are temporary.
Self-Control

- The absence of self-control is easy to define:
 - inability to follow through on an intended plan.

- What about the exercise of self-control?

- External versus internal devices.
 - External: locked savings accounts, retirement plans, etc.
 - Internal: the use of psychological private rules (Ainslee).

- See Strotz (1956), Phelps-Pollak (1968), or Laibson (1997).
Assets and Incomes

- Asset equation
 \[W_t + y = c_t + \frac{W_{t+1}}{\alpha}. \]

- Define present value of income:
 \[P \equiv \frac{\alpha}{\alpha - 1} y. \]

- Add to get total assets: \(A_t \equiv W_t + P \), so that
 \[A_t = c_t + \frac{A_{t+1}}{\alpha}. \]

- Credit Constraint:
 \[A_t \geq B = \Psi(P) > 0. \]
Preferences \(u(c) = \frac{c^{1-\sigma}}{(1 - \sigma)}, \) for \(\sigma > 0. \)

\[
\frac{1}{1 - \sigma} \left[c_0^{1-\sigma} + \sum_{t=1}^{\infty} \delta^t c_t^{1-\sigma} \right]
\]
Preferences \[u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \text{ for } \sigma > 0. \]

\[
\frac{1}{1-\sigma} \left[c_0^{1-\sigma} + \beta \sum_{t=1}^{\infty} \delta^t c_t^{1-\sigma} \right], \quad 0 < \beta < 1.
\]

- **Standard model:** \(\beta = 1. \)

- If \((\delta \alpha)^{1/\sigma} > 1 [\text{growth}]\) and \(\mu \equiv \frac{1}{\alpha}(\delta \alpha)^{1/\sigma} < 1 [\text{discounting}],\) then

 \[A_{t+1} = (\delta \alpha)^{1/\sigma} A_t \]

 \[c_t = (1 - \mu) A_t. \]

- \(\rightarrow\) **Ramsey policy.**

- If \(\beta < 1,\) optimal plan is **time-inconsistent.**
Policies and Values

- A policy ϕ specifies continuation asset A_{t+1} after every history.

- A policy generates values and payoffs after every history:
Policies and Values

- **A policy** \(\phi \) specifies continuation asset \(A_{t+1} \) after every history.

A policy generates **values and payoffs** after every history:

\[
V(h_t) \equiv u(c_t) + \delta u(c_{t+1}) + \delta^2 u(c_{t+2}) + \ldots
\]

\[
P(h_t) \equiv u(c_t) + \beta \left[\delta u(c_{t+1}) + \delta^2 u(c_{t+2}) + \ldots \right] = u(c_t) + \beta \delta V(h_t, \phi(h_t))
\]
Equilibrium Policy

- Following the policy is better than trying something else.

\[P(h_t) \geq u \left(A(h_t) - \frac{x}{\alpha} \right) + \beta \delta V(h_t, x) \text{ for every } x \in [B, \alpha A(h_t)]. \]
Equilibrium Policy

- Following the policy is better than trying something else.

- \[P(h_t) \geq u(A(h_t) - \frac{x}{\alpha}) + \beta \delta V(h_t, x) \] for every \(x \in [B, \alpha A(h_t)] \).
Equilibrium Policy

- Following the policy is better than trying something else.

\[
P(h_t) \geq u \left(A(h_t) - \frac{x}{\alpha} \right) + \beta \delta V(h_t, x) \quad \text{for every } x \in [B, \alpha A(h_t)].
\]
Equilibrium Policy

- Following the policy is better than trying something else.

\[P(h_t) \geq u\left(A(h_t) - \frac{x}{\alpha}\right) + \beta \delta V(h_t, x) \text{ for every } x \in [B, \alpha A(h_t)]. \]
Equilibrium Policy

Following the policy is better than trying something else.

- \(P(h_t) \geq u(A(h_t) - \frac{x}{\alpha}) + \beta \delta V(h_t,x) \) for every \(x \in [B, \alpha A(h_t)] \).
Self-Control Definition

- **Self-control** at A:

 \Rightarrow Accumulation at A in *some* equilibrium.

- **Strong self-control** at A:

 $\Rightarrow A_t \to \infty$ from A, in *some* equilibrium.

- **No self-control** at A:

 \Rightarrow No accumulation at A in *any* equilibrium.

- **Poverty trap** at A:

 \Rightarrow Slide to credit limit B from A in *every* equilibrium.
Uniformity and Nonuniformity

Uniform case:

Self control at every A, or its absence at every A.

Nonuniform case:

Self-control at A, no self-control at A'.

Proposition 1. Suppose no credit constraints, so that $B = 0$.

Then every case is uniform.

Poverty bias not built in by assumption.
Credit Constraints and Non-Uniformity

- $B > 0$ destroys scale-neutrality (in A), but how exactly?

- **Some intuition:**
 - Self-control depends on the severity of the consequences of a lapse in self-control.
 - Consequences more severe when the individual has more assets; hence more to lose.

- **Problem:**
 - Severity (suitably normalized) isn’t monotonic in assets.
Savings, $\beta=0.75$

- 45° line
- Highest saving
- Best SPE
- Ramsey
- Markov
- Worst SPE

Best SPE

Worst SPE
The Structure of Lowest Values

The diagram shows the relationship between $V(A)$ and A, with two lines: $H(A)$ and $L(A)$. The point B indicates a specific value on the A axis.
The Structure of Lowest Values
Proposition 2. If A' is continuation for A_* under lowest value at A_*, then A' is followed by value $H^-(A')$.

The Structure of Lowest Values
The Structure of Lowest Values

Proposition 2. If \(A' \) is continuation for \(A_\ast \) under lowest value at \(A_\ast \), then \(A' \) is followed by value \(H^{-}(A') \).
The Structure of Lowest Values

Proposition 2. If A' is continuation for A_* under lowest value at A_*, then A' is followed by value $H^-(A')$.
The Structure of Lowest Values

Proposition 2. If A' is continuation for A_* under lowest value at A_*, then A' is followed by value $H^{-}(A')$.
The Structure of Lowest Values

Proposition 2. If \(A' \) is continuation for \(A_* \) under lowest value at \(A_* \), then \(A' \) is followed by value \(H^{-1}(A') \).
Proposition 2. If A' is continuation for A_* under lowest value at A_*, then A' is followed by value $H^-(A')$.

$$u(c''_t) + \beta \delta \text{Blue} = u(c'_t) + \beta \delta \text{Orange} \Rightarrow u(c''_t) + \delta \text{Blue} < u(c'_t) + \delta \text{Orange}.$$
Lowest Values

- Structure is remarkably simple.

- One more binge, followed by highest-value program.

- Like Abreu penal codes, but for entirely different reasons.

- But argument also reveals why $L(A)$ jumps up occasionally.
maximize $u(A - x/\alpha) + \beta \delta L(x)$, say max at $x = \hat{A}$.
maximize $u(A - x/\alpha) + \beta \delta L(x)$, say max at $x = \hat{A}$.

Not possible; get a contradiction:

$$u(\hat{c}_t) + \beta \delta \text{Blue} \leq u(c'_t) + \beta \delta \text{Orange} \Rightarrow u(\hat{c}_t) + \delta \text{Blue} < u(c'_t) + \delta \text{Orange}.$$
maximize $u(A - x/\alpha) + \beta \delta L(x)$, say max at $x = \hat{A}$.

Possible, and generally:

$$u(\hat{c}_t) + \beta \delta \text{Blue} = u(c'_t) + \beta \delta \text{Orange}.$$
maximize $u(A - x/\alpha) + \beta \delta L(x)$, say max at $x = \hat{A}$.

Possible, and generally:

$u(\hat{c}_t) + \beta \delta \text{Blue} = u(c'_t) + \beta \delta \text{Orange}$.

By concavity of u, \hat{A} may need to jump up, so $L(A)$ jumps too.
Argument So Far

- The problem of internal self-control is both simple and complex.
 - **Simple**: what happens after lapse of control is easy to describe.
 - Lapse followed by **one** round of high c, then back to best path.
 - **Complex**: jump in worst values makes comparative statics hard.
 - As wealth goes up, can get cycles of control / failure of control.
- And yet . . .
Proposition 3 [Central Result]. In the non-uniform case,

- There is $A_1 > B$, such that every $A \in [B, A_1)$ has a poverty trap.
- There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control.
Outline I. The Poverty Trap

- $X(A)$: maximum wealth choice. Then $X(A) < A$ close to B.
Outline I. The Poverty Trap

- $X(A)$: maximum wealth choice. Then $X(A) < A$ close to B.
Outline I. The Poverty Trap

- \(X(A)\): maximum wealth choice. Then \(X(A) < A\) close to \(B\).
Outline II. Strong Self-Control

- There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control
Outline II. Strong Self-Control

- There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control.
Outline II. Strong Self-Control

- There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control
There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control.
Outline II. Strong Self-Control

- There is $A_2 \geq A_1$ such that all $A \geq A_2$ exhibit strong self-control
Outline II. Strong Self-Control, contd.
Outline II. Strong Self-Control, contd.

\[\mu_1 = \frac{A^{**}}{B}, \quad \mu_2 = \frac{A^{***}}{B} \]
Outline II. Strong Self-Control, contd.

\[X(A) \]

\[\mu_1 = A^{**}/B, \quad \mu_2 = A^{***}/B \]

\[[(\mu_1)^k A^{**}, (\mu_2)^k A^{***}] \]

\[[(\mu_1)^{k+1} A^{**}, (\mu_2)^{k+1} A^{***}] \]
Outline II. Strong Self-Control, contd.

\[X(A) \]

\[(\mu_1)^m(\mu_2)^nA \]

\[\mu_1 = \frac{A^{**}}{B}, \quad \mu_2 = \frac{A^{***}}{B} \]

\[\left[(\mu_1)^kA^{**}, (\mu_2)^kA^{***} \right] \]
Some Implications of the Model

1. Link Between Credit Limit and Self-Control

 • Modified neutrality: only B/A matters.

 • Increase in credit limit has ambiguous effects, depending on where you start.

 • The relatively rich improve their accumulation, the relatively poor slide deeper.
2. **Asset-Specific MPCs**

- \(B/A = B/(W + \text{permanent income}) \).

- Jump in financial assets \(W \).

- Nonuniform case: decumulation to accumulation.

- So low MPC from financial assets.

- Jump in income. If \(B/(\text{perm inc}) \) constant, \(B/A \uparrow \).

- High MPC in non-uniform case.

- Lower bound: \(B \) unchanged; then identical MPCs.
3. **External Versus Internal Commitments:**

- External commitments help when internal commitment fails.

- But external commitments *alone* also raise B.

- Can damage “internal savings” as external assets accumulate.

- Suggests policy of *savings targets*, upon which lockup removed.

- To make this precise, need maximums and/or taste shocks.

- (Otherwise can conduct all savings externally.)
4. **Who Wants External Commitments?:**

- Those individuals with *low ratios of* A/B.

- Asset-poor want commitment savings, asset-rich would rather save on their own.

- Same result true of income-poor and income-rich provided B unchanged.

- Result reversed for income if B/y is constant.
Summary

- We know that a failure of self-control can lead to poverty.
- Is the opposite implication true?
- Model constructed for scale-neutrality: the result isn’t effectively “assumed”.
- Under all nonuniform solutions, the relatively poor must suffer.
- Novel policy implications.
- Distinction between assets and incomes.
- Interplay between external and internal commitments.