Central Place Theory and Zipf’s Law

Wen-Tai Hsu∗

July 17, 2008

Abstract
This paper provides a theory of the location of firms and, as cities are groups of firms, the emergence of cities. Using a model of equilibrium entry, this paper provides a microfoundation for central place theory and the conditions under which Zipf’s law for cities emerges. Central place theory describes how a hierarchical city system with different layers of cities serving different sized market areas forms from a uniformly populated space. Zipf’s law for cities, that is, the size distribution of cities following the Pareto distribution with a tail index close to 1, is a robust empirical regularity. In the model, the main force driving the size difference of cities is the tradeoff between transportation cost and scale economies, which differs across goods due to different fixed costs of production. Since a central place hierarchy also implies a hierarchy of firms, Zipf’s law for firms is also approximated. The theory is also consistent with a newly discovered empirical regularity, the number-average-size rule, which is a log-linear relationship between the number of cities and the average size of cities where an industry is located.

JEL: R12; L11; R13
Keywords: central place theory, Zipf’s law, number-average-size rule

∗Department of Economics, University of Minnesota, Twin Cities. 1035 Heller Hall, 271 19th Ave S., Minneapolis, MN 55455. Email: wentai@umn.edu. I am grateful to Tom Holmes, Sam Kortum, and Erzo G. J. Luttmer for their advice and encouragement. I benefit from the discussions and comments from seminar participants at the University of Minnesota, Federal Reserve Bank of Minneapolis, the University of Chicago, the University of Toronto, and the Doctoral Poster Session of the American Real Estate and Urban Economics Association. In particular, I would like to thank Marcus Berliant, V.V. Chari, Gilles Duranton, Willie Fuchs, Xavier Gabaix, Patrick Kehoe, Wen-Chi Liao, Roger Myerson, Derek Neal, Shi Qi, Christian Redleaf, Maryam Saedi, Robert Shimer, Aloysius Siow, Nancy Stokey, Evgueni Turkay, Matt Turner, Harald Uhlig, Ping Wang, Tianxi Wang, and William Wheaton. All errors are mine. Updated version of this paper is available at http://www.econ.umn.edu/~tedhsu75/papers.htm.
1 Introduction

The distribution of city sizes is highly skewed: there are many more small cities than there are large cities. Remarkably, the distribution obeys the rank-size rule by which the product of the rank and the size of a city is a constant. This empirical relationship is also named Zipf’s law and is shown to be robust across historical and cross-country studies.¹

The existence of such a striking empirical relationship calls for explanations, and there has been much recent theoretical work aimed at providing them. Deriving Zipf’s law from a steady-state distribution of a random growth process has been the dominant approach, e.g., Gabaix (1999) and Rossi-Hansberg and Wright (2007).² In a random growth process, large cities arise due to long histories of favorable productivity shocks; however, since the probability of such events are low, there are not many large cities, i.e., a skewed distribution. Gabaix (1999) explains why the steady state distribution should be Zipf’s. One criticism concerning this literature is that there is little sense that cities of different sizes play different roles in the economy.³ Moreover, there are no spatial elements or spatial interactions across cities. What drives the size differences of cities is simply randomness.

This paper explains Zipf’s law in a spatial model in which cities of different sizes serve different functions in the economy. It builds on the insights of central place theory, first developed by the German geographers Christaller (1933) and Lösch (1940). The idea of the theory is that goods differ in the degree of scale economies relative to market size. Goods with substantial scale economies, e.g., stock exchanges or symphony orchestras, will only be found in a few places, while other goods with low scale economies, e.g., gas stations or convenience stores, will be found in many places. Moreover, large cities tend to have a wide range of goods, while small cities only provide goods with low scale economies. Naturally, small cities are in the market areas of large cities for those goods that they do not provide. In Christaller’s scheme, the hierarchy property⁴ holds if larger cities provide all goods that smaller cities provide. We can readily see that this setup implies a skewed city size distribution.

In this paper, a city system has multiple layers of cities, and the cities of the same layer

¹Zipf’s law has its name following Zipf (1949). However, the discovery of Zipf’s law may be as early as Auerbach (1913). For more details regarding Zipf’s law, see Section 2 or Gabaix and Ioannides (2004).

³Combining the random growth approach and the type-of-cities theory of Henderson (1974), Rossi-Hansberg and Wright (2007) are an exception. Nonetheless, their model has the feature that any city specializes in only one industry. More discussion about this will follow.

⁴This is often referred to as the hierarchy principle in the literature.
have the same functions, i.e., host the same set of industries. For simplicity, the geographic space is assumed to be the real line. The model can be viewed as a multiple-good extension to Lederer and Hurter (1986), in which firms play a two-stage game: firms compete in price at each local market after making their location choices. The driving force behind the differentiation of cities is the heterogeneity of scale economies among goods, which is modeled by heterogeneity in the fixed cost of production.\(^5\) Two important results are that a class of equilibria consistent with the hierarchy property exists, and that there is always only one next-layer city in between two neighboring larger cities. The second result, for which I call the central place property, implies that the ratio of the market areas of one layer to the next is 2, and it is analogous to the \(K = 3\) market principle of Christaller (1933).\(^6\) In this paper, a central place hierarchy is a city system in which both the hierarchy and central place properties hold.

This paper does four things.

First, it microfound central place theory. Although central place theory has a long history in economic geography, its modeling has been mechanical. (See Chapter 3.1 of Fujita et al. (2001) and Berliant (2005) for critiques of the lack of microfoundations in this literature.) A few attempts to formalize central place theory have been made in the economics literature. Fujita, Krugman, and Mori (1999) generated a hierarchical city system through an evolutionary approach to extend a core-periphery model of Fujita and Mori (1997). Given the existence of the first and largest city, Fujita et al. (1999) successfully modeled the hierarchy property.\(^7\) Compared to this paper, however, their model is relatively complicated, the location pattern of cities does not feature the central place property, and their model do not lead to Zipf’s law.

Second, this paper specifies the conditions under which the city size distribution is not only skewed, but in fact, obeys Zipf’s law. Note that this is not the first paper explaining Zipf’s law via central place theory, since Beckmann (1958) already did so through a mathematical treatment of a hierarchical structure.\(^8\) Nonetheless, similar to most previous central place theory studies, he did not provide a microfoundation for his treatment. I prove that Zipf’s law emerges when the number of layers in a city hierarchy is large enough. The fundamental reasoning behind Zipf’s law is that the rank of cities doubles from one layer to the next (i.e., the central place property), while the sizes of cities shrink at a rate close to one

\(^5\)Alternatively, one can model the heterogeneity of scale economies by the heterogeneity in demands across goods. The model in this paper can be easily transformed in this way.

\(^6\)In the extension to the plane, which can be easily done, if there is always only one next-layer city located in the equilateral triangle area in between three neighboring larger cities, this ratio of market areas is 3.

\(^7\)Another attempt is by Eaton and Lipsey (1982), who modeled the co-location of two retail stores (each selling a distinct good) and their coexistence with one-store locations in a spatial competition model.

\(^8\)Fujita et al. (2001) were obviously aware of the link between central place theory and Zipf’s law, but they could not establish this link. See Chapter 11 and 12.
half, since when this rate is exactly one half, the rank-size rule holds. A numerical exercise conducted in this paper verifies the result and shows how fast the convergence to Zipf’s law is achieved.

Third, the model is also consistent with a newly discovered empirical regularity called the number-average-size (NAS) rule, which was first documented from Japanese urban-industrial data by Mori, Nishikimi, and Smith (2007). The NAS rule states that the relationship between the number of cities and the average size of cities where an industry is located is linear on a log-log scale with a negative slope. To illustrate the definition, suppose Major League Baseball is an industry. Since there are 26 cities (MSA’s) that host at least one baseball team, the number of concern is 26, and the average size of concern is the average population of these 26 cities. In this paper, I document that the NAS rule also holds for the US. Notice that central place theory already implies that the number and average sizes are negatively related. Moreover, Mori et al. (2007) show that this new empirical regularity is essentially equivalent to Zipf’s law, provided that the hierarchy property holds. Therefore, since the model in this paper has both the hierarchy property and Zipf’s law, the NAS rule holds. It is worth emphasizing that the link between Zipf’s law and the NAS rule demonstrates the importance of the insights of central place theory regarding the formation of an urban system. In contrast, urban theories based on the random growth approach and/or the type-of-cities approach have little explanatory power in this respect. In the type-of-cities theory of urban systems, e.g., Henderson (1974) and Rossi-Hansberg and Wright (2007), each city specializes in only one industry, and city size differs due to industrial differences in production technology.

Fourth, this paper also derives Zipf’s law for firms. Notice that a central place hierarchy, indeed, also leads to a hierarchy of firms since those firms located exclusively in large cities serve larger market areas (i.e., more consumers) and must be larger. Using US data, Holmes and Stevens (2004) established a robust fact that within an industry, areas of industrial concentration tend to have larger plants. This provides a different angle from the literature of explaining Zipf’s law for firms, which also predominantly draws upon random growth processes. See, for examples, Luttmer (2007) and Simon and Bonini (1958).

There are two steps in the modeling in this paper. In the first step, a basic model is developed to deliver the fundamental hierarchical structure. Simple closed form solution is

9 On the other hand, it is obvious that for the industry of gas stations, the number is larger than 26, and the average size is smaller.

10 In Mori et al. (2007), the hierarchy property (they called it the hierarchy principle) states that if an industry is present in a city of a certain size, it is present in all cities of larger sizes. Note that this is equivalent to the hierarchy property of Christaller (1933) – cities of higher order provide all goods that cities of lower order provide, assuming that the relationship between “industries” and “goods” is one-to-one.

11 For evidence on Zipf’s law for firms, see Axtell (2001) and Luttmer (2007). Also, see the discussion in Section 2.
readily obtained in the basic model, and this provides a tractable framework for studying the conditions for Zipf’s laws and the NAS rule. Nonetheless, the equilibria giving rise to central place hierarchies are only a subset of all possible equilibria, and there is no particular argument favoring this special type of equilibria. Moreover, the hierarchies in the basic model emerges from the interactions of two types of agents: firms and farmers. There is no role for city workers, and, hence, the size definitions of cities is not by populations in cities. The general model provides remedies for both problems, by incorporating workers and using the home market effect (because firms sell to local workers) to provide an agglomeration force favoring the type of equilibria with hierarchical structure. The drawback of the general model is that it no longer has a closed form solution, and one needs numerical exercises to check the robustness of the Zipf’s law results.

The model, as is, has an empirical implication regarding the distribution of economic activities within a metropolitan area. More discussions on this implication will follow in the conclusion.

This paper models central place hierarchies as equilibrium results. A companion paper (Hsu, 2008) presents a detailed examination of the efficiency properties of central place hierarchies. In particular, central place hierarchy equilibria are, in general, suboptimal. However, conditional on the hierarchy property, the optimal central place hierarchy exhibits similar location pattern to that in equilibrium and, hence, delivers Zipf’s law and the NAS rule.

The rest of this paper is organized as follows. Section 2 describes the empirical regularities that concern this paper in greater detail, especially the NAS rule for the US, since it is first documented here. Section 3 lays out the basic model and derives central place hierarchies as equilibrium results. Section 4 specifies the conditions under which Zipf’s laws and the NAS rule hold. Section 5 generalizes the model to add workers’s location decisions and shows the robustness of the Zipf’s law results. Section 6 concludes.

2 Empirical Regularities

The purpose of this section is two-fold: to provide more details of the empirical evidence on Zipf’s laws and central place theory, and to document the NAS rule for the US.

2.1 Zipf’s laws and central place theory

Zipf’s law for cities has been well-documented. Detailed empirical issues, as well as a survey of the theoretical literature, may be found in Gabaix and Ioannides (2004). The following quickly gives readers an idea.
The observation of Zipf’s law for cities is most clear when one plots city ranks against city sizes on a log-log scale, that is, Zipf’s plot. Figure 1 presents a Zipf’s plot using US 2000 census data for all MSA’s, i.e., Metropolitan Statistical Areas. The OLS regression of the log of rank on the log of size of all 362 MSA’s (metropolitan statistical areas) entails an R^2 of 0.9857 and a slope of -0.9491. While the fact that a straight line fits fairly well leads one to believe that the size distribution of cities follows the Pareto distribution, defined by

$$P(S > s) = \frac{a}{s^\zeta}, \quad s \geq s,$$

for some positive constants a and s and the tail index ζ, historical and cross-country studies show that the tail index ζ is approximately 1. When $\zeta = 1$, the product of the rank and size of a city is a constant, the rank-size rule, which is an attractive interpretation of Zipf’s law. It means that the size of the second largest city (e.g., L.A.) is (approximately) half of the largest (e.g., New York) and that of the third largest (e.g., Chicago) is one-third of the largest, etc.

One should note that, positing the Pareto distribution, the OLS estimation is biased and typically underestimates the true tail index. Gabaix and Ibragimov (2007) propose an adjusted OLS method that minimizes this bias. By their method, one runs a regression of

12 Eeckhout (2004) argues that the size distribution of cities should follow a lognormal distribution when all cities (i.e., human settlements) are considered. Also, see Holmes and Lee (2007) for their discussion on the work of Eeckhout (2004).

13 The empirical literature on size distributions sometimes call this Zipf’s coefficient. In this paper, the tail index, Zipf’s coefficient, and the slope of a Zipf’s plot are used interchangeably.

14 See Gabaix and Ioannides (2004) for a detailed examination.

15 See Gabaix and Ioannides (2004) and Gabaix and Ibragimov (2007). On the other hand, the OLS estimator is still consistent.
the log of rank—$\frac{1}{2}$ on the log of size. The estimated tail index for the 362 MSA’s of the US 2000 census data is 0.9699. To test $\zeta = 1$, the (asymptotic) standard error is 0.0743. With a 5% level of significance, one does not reject the hypothesis of $\zeta = 1$.

It is also a robust fact that there are deviations from Zipf’s law in both very large and very small cities.\(^{16}\) Rossi-Hansberg and Wright (2007) provide a model capturing this property. This fact can also be matched in this paper.\(^{17}\)

The regular shape of firm size distribution has been noted several decades ago, e.g., Simon and Bonini (1958), Steindl (1965), and the general perception was that the firm size distribution overall fit a log-normal distribution, while its upper tail fit the Pareto distribution or Zipf’s law. Nonetheless, using the 1997 US economic census, Axtell (2001) documents the size distribution for all tax-paying firms in the US, showing that Zipf’s law fits fairly well for the overall distribution. Luttmer (2007) does the same for 2002 and has similar results. The estimates of tail indices from the two papers mentioned were both 1.06; close to, but above 1.

The empirical literature in economic geography regarding central place theory consists mostly of case studies. The earliest efforts surround the spatial patterns of human settlements, and the most notable example is, of course, Christaller (1933)’s study of the spatial patterns of cities and towns in Southern Germany, which seems to fit the assumption of the homogeneous farming plain. Furthermore, Berry and Garrison (1958a,b) provide case studies regarding the sizes and functions of central places in Snohomish County, Washington.

Few empirical studies have tried to examine the main propositions/assumptions of central place theory using large-scale data, such as national data, until Mori et al. (2007). They documented two empirical regularities: the hierarchy property and the NAS rule, using Japanese urban-industrial data. Using 3-digit classifications of industries, they found that 71% of industries present in certain cities are also present in all larger sized cities. Moreover, they show that this finding is unlikely to be a random event. I have also examined the evidence of the hierarchy property by using US data. It seems that the hierarchy property also holds for the US. However, this detail is omitted from this paper.

\subsection*{2.2 The NAS rule}

Recall that the number-average-size (NAS) Rule states that the number of cities and the average size of the cities where an industry is located follow a log-linear relationship. In

\(^{16}\)Again, see Gabaix and Ioannides (2004).

\(^{17}\)In this paper, the slight concavity of Zipf’s plot emerges from the fact that the existence of any city requires a market area (scale economies) above some critical level. In Rossi-Hansberg and Wright (2007), each city specializes in only one industry; therefore, city size distribution is tied closely to industry-specific shocks. Small (Large) cities grow faster (slower) than the mean growth rate because they have small (large) stocks of capital due to decreasing returns.
Mori et al. (2007), the regressions of the log of the average size on the log of the number for the three-digit industries of Japan (JSIC) of 1980/1981 and 1999/2000 entail R^2s that are both over 0.99, with slopes being $-0.7204/ -0.7124$.

Using County Business Pattern Data, I document that the NAS rule also holds for the US. Figure 2 shows the number-average-size (NAS) plot (log of average size on the vertical axis and the log of number on the horizontal axis) for the 77 3-digit NAICS with the cities defined by MSA’s/CMSA’s. The “presence” of an industry in an MSA (or a CMSA) is any positive employment.

The OLS regression gives

$$
\log(\text{averagesize}) = 17.789 - 0.7477 \log(\text{number}), \quad R^2 = 0.9991,
$$

(0.0141) (0.00255)

where the numbers in the parentheses are the standard errors.

A straight line almost perfectly fits!

18Here, the County Business Pattern Data are taken from the compiled data by Holmes and Stevens (2004). The data are available at http://www.econ.umn.edu/~holmes/data/CBP/index.htm. I thank Tom Holmes for helping me with the data.

19NAICS stands for the North American Industry Classification System, and the NAICS used is the 1997 version. Similar to Mori et al. (2007), I excluded the sectors of Agriculture, Forestry, Fishing and Hunting (11), and Mining (21), since they are not considered as central place functions. Public Administration (92) was also excluded, since its locations are not determined solely by economic incentives and could be arbitrary.

20CMSA stands for combined metropolitan statistical areas.

21Although the plot shown in Figure 2 consists of 77 3-digit NAICS, 51 of them are located in all MSA’s; thus, they have the same number (267) and average size (813544). In light of the limited number of informative sample points in 3-digit NAICS, it is important to note the robustness of the NAS rule in 4-digit NAICS (shown in Figure 3). Also, out of 77 industries, 21 of them are in the manufacturing sector.
One naturally wonders how the NAS plot and the regression result change if one changes the digit of the NAICS or the threshold of “presence.” Figure 3 shows 4 variations: 3-digit NAICS and presence defined by employment of at least 50 people (left-top), 3-digit NAICS and the threshold of employment of at least 100 people (right-top), 4-digit NAICS and any positive employment (left-bottom), and 4-digit NAICS and the threshold of at least 50 people (right-bottom). The \((R^2, \text{slope})\) pairs are \((0.997, -0.737)\), \((0.994, -0.721)\), \((0.988, -0.694)\), and \((0.944, -0.622)\), respectively. Overall, the log-linear relationship is robust across the variations of the definitions of industry and presence.

\[\text{Number (log scale)} \quad \text{Average Size (million; log scale)}\]

\[\text{NAS Plot (3-digit NAICS, threshold: 50)}\]

\[\text{Number (log scale)} \quad \text{Average Size (million; log scale)}\]

\[\text{NAS Plot (3-digit NAICS, threshold: 100)}\]

\[\text{Number (log scale)} \quad \text{Average Size (million; log scale)}\]

\[\text{NAS Plot (4-digit NAICS)}\]

\[\text{Number (log scale)} \quad \text{Average Size (million; log scale)}\]

\[\text{NAS Plot (4-digit NAICS, threshold: 50)}\]

\[\text{Number (log scale)} \quad \text{Average Size (million; log scale)}\]

Figure 3: number-average-size plots for different industry definitions and thresholds of employment.

One observes that all slopes of the four variations are all smaller than the slope of the benchmark case of 3-digit NAICS and any positive employment. There are two clear reasons as to why this is the case. First, as the threshold is higher, one expects that given the average size, the number of cities should decrease. Therefore, the slope of the NAS regression line

\[\text{To determine which MSA/CMSA is to be excluded by the threshold, I use business employment data in CBP by industry and by county. For establishments with more than 1,000 employment, I use cell counts by size class, industry and county from Holmes and Stevens (2004). As shown in Holmes and Steven (2004), the employment size classes in CBP can be deemed as a fine grid, and the true mean (using national data) in each size class should be a close enough approximation.}\]
becomes flatter compared to the benchmark case. Second, it is harder for the finer classified industries to satisfy the hierarchy property. Suppose that the hierarchy property holds perfectly for an industry, and that the number of cities that host this industry is given by \(n \). Then, the average size of cities hosting this industry is the average size of the first \(n \) largest cities; this average size is, in fact, the upper bound of the average size of any arbitrary \(n \) cities. Thus, if the hierarchy property holds perfectly, the actual NAS plot will be the same as the upper average-size plot. Since the hierarchy property holds to a lesser degree with a finer classification of industries, the slopes of the NAS plot becomes flatter compared to the upper average-size plot because of the decrease in average size, given the number of cities. Interestingly, the discrepancy between the actual NAS plot and the upper average-size plot provides a clue as to how to test the robustness of the hierarchy property.

3 Central Place Theory: the Basic Model

In this section, I present a basic model in which central place hierarchies arise in equilibria.

3.1 Model Setup

3.1.1 Geography, goods, and agents

The geographic space is the real line, and the location is indexed as \(x \in \mathbb{R} \). There is a \([0, 1]\) continuum of consumption goods. There are two types of agents: farmers and firms. There will be workers as a third type of agents in the general model, and they are completely mobile. In contrast, farmers are completely immobile and are uniformly distributed on the real line with a density of 1. Each farmer demands one unit of each good in \([0, 1]\). Imagining looking at the spatial economy on a very large scale, we virtually view all goods as necessities.

For any good, production requires fixed cost to set up production at a location. Denote the fixed cost of production for a good as \(y \), and denote the distribution function of fixed costs as \(F : [\tilde{y}, \bar{y}] \subset \mathbb{R}_+ \rightarrow [0, 1] \).\(^{23}\) For each good, to produce one unit requires a constant marginal cost \(c \). The transportation cost is \(t \) per unit per mile traveled.

3.1.2 Two-stage game

For each good, there is an infinite pool of potential firms. Assume that each entrant firm sets up only at one location. The firms and farmers play the following two-stage game:

1. Entry and location stage:

 Firms simultaneously decide whether to enter, and upon entering, they must decide

\(^{23}\)The left end of the support can be open.
their locations. Firms need to pay the fixed cost to set up at the location. Assume the
tie-breaking rule that if a potential firm sees a zero-profit opportunity, it enters.

2. Price competition stage:
Firms deliver goods to farmers. Given the locations of firms, each firm sets a (delivered)
price schedule over the real line. For each good, each location on the real line is a market
in which firms engage in Bertrand competition. For each good, each farmer decides to
buy from which firm.

The model can be viewed as an extension to the spatial market model with price dis-

cricination of Lederer and Hurter (1986) to a continuum of goods.24 25

\textbf{Definition 1.} An equilibrium is a collection of SPNE for each good.

In the following, we study a particular type of equilibria.

3.2 Hierarchy Equilibrium

A hierarchy equilibrium is one in which the hierarchy property holds. Equivalently, we have

\textbf{Definition 2.} A hierarchy equilibrium in an equilibrium in which at any location of produc-
tion, the set of goods produced must be of the form \([y, y]\) for some \(y\).

Goods differ only in fixed costs. Thus, ignoring fixed costs makes the following derivation
of gross profit (i.e., gross of fixed cost) for one good applicable to all goods. Consider two
neighboring firms with a distance of \(L\). Denote the firm on the left-hand side \(A\) and that
on the right-hand side \(B\). The marginal costs of delivering the good to a consumer who is \(x\)
distance apart from \(A\) are thus

\[
MC_A = c + tx, \\
MC_B = c + t(L - x).
\]

24The model is different from that of Lederer and Hurter (1986) in many ways, e.g., they consider the
competition of (only) two firms with a general production technology and a general distribution of demand
over a geographic space. Nonetheless, the market mechanism is the same – a two-stage game with firms
delivering goods.

25What really distinguishes the spatial market models with price discrimination and the spatial competition
models, in which firms charge uniform prices, is who bears the transportation cost. It is not clear as to which
mechanism is more realistic. However, it can be shown that there exists no equilibrium in which the hierarchy
property holds in the spatial competition version of the model in which the transportation cost is borne by
the consumers. I have developed an alternative model of a central place hierarchy in which the transportation
cost is borne by the consumers, and the hierarchy property holds partially. This alternative model builds on
the work of Salop (1979) and Vogel (2007). In particular, using the framework in Vogel (2007), the model is
free from the problem of the nonexistence of price equilibrium.
Bertrand competition at each \(x \) results in the firm with the lower marginal cost grabbing the market and charging the price of its opponent’s marginal cost. Thus, the equilibrium price, given the distance \(L \), is

\[
p(x) = \begin{cases}
 c + t(L - x) & x \in [0, \frac{L}{2}] \\
 c + tx & x \in \left[\frac{L}{2}, L \right]
\end{cases}
\]

Obviously, the gross profit for firm A from the market area on its right-hand side and that for B from its left-hand side are both \(\frac{tL^2}{4} \). Figure 4 illustrates the marginal cost of both firms and the equilibrium price, as well as the gross profits from the market area between A and B.

Consider any entrant’s strategy at the first stage. Let this entrant be named C. If C were to enter into a market area between A and B, it is straightforward that C’s profit maximizing location is right in the middle between A and B, given A and B’s locations. Any deviation from the middle will strictly decrease C’s profit, and C would enter if and only if this maximal profit is nonnegative. Therefore, firms must be an equal distance apart, and the gross profit of any firm with a market area of \(L \) is \(\frac{tL^2}{2} \).

The above derivation of a sub-game perfect Nash equilibrium for an arbitrary good leads to Lemma 1.

\[\text{Notice that there is no room for arbitrage; therefore, firms can price discriminate effectively. To see this, refer to Figure 4. For any consumer located at } x \in [0, \frac{L}{2}], \text{ the marginal cost of selling the product that she purchases at } x \text{ to some consumers to her left is the same as } MC_B = P_A, \text{ and the marginal cost of selling the product to some consumers to her right must be at least as large as the equilibrium price. Thus, there is no way she could gain any profit by reselling the product.}\]
Lemma 1. Fix some y and define $L[y]$ to be the solution to the zero-profit condition $\frac{tL'[y]}{2} = y$. Thus, $L[y] = \sqrt{\frac{2y}{t} t}$. There is a continuum of equilibria in which one firm is located at every point in $\{x + nL \}_{n=-\infty}^{\infty}$, where $L \in [L[y], 2L[y])$ and $x \in [0, L[y])$.

There is a continuum of equilibria because any entrant in between two firms with $\frac{L}{2}$ distance must earn a negative profit, since $\frac{L}{2} < L[y]$.

Notice that the hierarchy property, together with an inelastic demand, implies that the set of goods that any location of production provides must be in the form of an interval of $[y, y]$ for some y. Barring a degenerate F, there exists a decreasing sequence $y = y_1 > y_2 > ... > y_I \geq y$, for some I, denoting the cutoffs of the ranges of goods produced in different locations. A hierarchy equilibrium is said to satisfy the central place property if the market area of firms producing $(y_{i+1}, y_i]$ is half of that of firms producing $(y_i, y_{i-1}]$.

Definition 3. A hierarchy equilibrium satisfying the central place property is called a central place hierarchy. A central place hierarchy is characterized by a decreasing sequence $\{y_i\}_{i=2}^\infty$, such that $y \equiv y_1 > y_2 > ... > y_I \equiv y$, and firms producing goods in $(y_{i+1}, y_i]$ are an equal distance apart by $L_i = \frac{y_i}{y_{i+1}}$, $i \in 1, 2, ..., I$. Due to the hierarchy property, any location of production produces goods in the range of $[0, y]$, and it is called a layer-i city.

The following proposition constructs a continuum of hierarchy equilibria and shows that any hierarchy equilibrium satisfies the central place property. Moreover, conditional on the distance between two layer-1 cities, the hierarchy equilibrium is unique. Therefore, the multiplicity comes from the distance of $L_1 = mL[y]$, $m \in [1, 2)$. Call m the multiplicity factor. An example of a central place hierarchy is illustrated in Figure 5.

Proposition 1 (Central place hierarchy when $r \leq c$). Suppose that $r \leq c$. For each $L_1 = mL[y]$, $m \in [1, 2)$, define $L_i = \frac{L_1}{2^{i-1}}, \forall i \geq 2$ and construct the cutoffs $\{y_i\}_{i=2}^\infty$ to solve the zero-profit conditions $\frac{tL'^2}{2} = y_i$. Then, for each $m \in [1, 2)$, there exists a unique hierarchy equilibrium in which all type-y firms with $y \in (y_{i+1}, y_i]$ are L_i distance apart. The number of layers is given by

$$I = \left\lfloor \frac{2 \ln m + \ln \frac{y}{y} - \ln y}{2 \ln 2} \right\rfloor + 1,$$

where \lfloor, \rfloor denotes the floor of a real number. Moreover, any hierarchy equilibrium satisfies the central place property.

Proof. Referring to Lemma 1, fix an $x \in \mathbb{R}$. Make the grid for $(y_{i+1}, y_i] \{x + nL_i\}_{n=-\infty}^{\infty}$ on the real line so that any location of firms has goods in the form of $[y, y_i]$ for some i. This way, the location configuration already satisfies the hierarchy property. For any $y \in (y_{i+1}, y_i]$,

$$\frac{L_i}{2} = L_{i+1} = L[y_{i+1}] < L[y] \leq L[y_i] < L_i,$$
where the last weak inequality is, indeed, an equality except for \(i = 1 \). Therefore, for any \(y \in (y_{i+1}, y_i] \), firms are \(L_i \) distance apart with \(L_i[y] \leq L_i < 2L_i[y] \). By Lemma 1, each good is in equilibrium.

Note that the gross profits \(\frac{tL_i^2}{2} \) shrink over layers toward 0. Therefore, the number of layers \(I \) is infinite if and only if \(y = 0 \). Suppose that \(y > 0 \); then the formula for \(I \) is derived from \(\frac{tL_i^2}{2} \geq y \) and \(\frac{tL_{i+1}^2}{2} < y \). Notice that (1) already implies \(I = \infty \) if \(y = 0 \).

To see that any hierarchy equilibrium satisfies the central place property, I show that the continuum of equilibria so constructed exhausts all hierarchy equilibria. In any hierarchy equilibrium, all firms are an equal distance apart. Suppose there are \(n_i \in \mathbb{N} \) layer-\(i \) cities in between two neighboring larger cities. Clearly, \(y_i \) firms must earn zero profits and must have a market area of \(\frac{L'}{n_i} \), where \(L' \) is the market area of good in \((y_i, y_i-1] \). However, if \(n_i > 1 \), it is always profitable for a firm producing a \(y \) slightly larger than \(y_i \) to enter in the middle between two cities that host \((y_i, y_i-1] \). Therefore, \(n_i = 1 \) for all \(i \).

Apparenty, given any hierarchy equilibrium, deviations of firms in a subset of \([y, y] \) by moving their locations by the same distance and in the same direction change nothing in terms of pricing and profits. Hence, there is no particular reason why the hierarchy equilibria are more plausible than others. Even when we begin with a hierarchy equilibrium, there are no forces preventing the described deviation from happening.

To address this problem, Section 5 provides a model in which workers also enter simultaneously with firms in the first stage of the game. Assuming infinite commuting cost, workers will enter at locations where firms set up. If firms, in addition to their sales to farmers, sell to local workers, a home market effect is generated. Indeed, this agglomeration force can
prevent the above-mentioned deviation.

On the other hand, the general model does not provide closed-form solutions as the basic model does. Hence, I will investigate the conditions under which Zipf’s laws and the NAS rule hold under the basic model. I will then show numerically the robustness of Zipf’s laws and the NAS rule under the general model.

4 Zipf’s Laws and the NAS Rule

In this section, I examine the conditions under which Zipf’s laws and the NAS rule hold in a central place hierarchy. One common requirement for all cases is that either there are infinite layers, or the number of layers is large enough.

4.1 Zipf’s Law for Cities

In a central place hierarchy, all firms in the range \((y_{k+1}, y_k]\) produce for a market of size \(L_k\). Thus, the output of firms in this range is \(L_k(F(y_k) - F(y_{k+1}))\). Define the size of a layer-\(i\) city by its total units sold to farmers:

\[
Y_i = \sum_{k=i}^{i} L_k(F(y_k) - F(y_{k+1})).
\]

Figure 6 shows an illustration of the definitions of \(Y_i\). The green (dark) and red (light) areas represent the total quantity produced in a layer-1 and layer-2 city, respectively. Notice that if we assume that the marginal cost takes labor, and if the commuting cost is zero, this definition of city size is actually proportional to the “working/commuting” population of a layer-\(i\) city.\(^{27}\)

Per layer-1 city, there is one layer-2 city and \(2^i-2\) layer-\(i\) cities. Thus, the total number of cities up to layer-\(i\) is

\[
R_i = 1 + 1 + \sum_{k=3}^{i} 2^{k-2} = 2^{i-1}.
\]

We are interested in the relationship between the size \(Y_i\) and \(R_i\), which approximates the ranks of layer-\(i\) cities. Notice that since the rank doubles from one layer to the next, Zipf’s law is approximated if the city size \(Y_i\) approximately shrinks in half from one layer to the next.

\(^{27}\)As an interesting contrast, the general model in Section 5 can be viewed as a case where the commuting cost is infinite so that workers reside at the locations of productions as point masses.
4.1.1 The mechanical condition for Zipf’s law

There is, indeed, a simple but powerful condition linking directly a central place hierarchy and Zipf’s law for cities, regardless of what the underlying economics behind the hierarchy is. Given a central place hierarchy, the location patterns of cities of different layers are fixed, and, hence, different economics would matter only for how the fractions of goods in different layers are determined.²⁸ The following proposition is a theorem based on fractions of goods \((z_i)\), and this provides a clearer view as to how the propositions based on the fundamentals of this model (i.e., \(F(\cdot)\), since \(z_i = F(y_i)\)) work. This proposition is then useful in cases where other mechanisms for central place hierarchies are provided by future researches.

Proposition 2 (Bounds on fraction ratios). Suppose that there are infinitely many layers in a central place hierarchy. Let \(z_i\) denote the fraction of goods produced in a layer-\(i\) city, and let \(\Delta_k = z_k - z_{k+1}\). Suppose there is a \(\rho > 1\) such that for all \(i \in \mathbb{N}\),

\[
\frac{1}{\rho} \leq \frac{\Delta_{i+1}}{\Delta_i} \leq \rho.
\]

Then,

\[
\frac{1}{2} \left(\frac{1}{\rho} - 1 \right) \leq \frac{Y_{i+1}}{Y_i} - \frac{1}{2} \leq \frac{1}{2} (\rho - 1).
\]

Proof. Observe

\[
Y_i \propto \sum_{k=i}^{\infty} \frac{\Delta_k}{2^k}.
\]

²⁸For example, instead of using heterogeneity of fixed costs among goods, one can use a model of heterogeneous demand to generate a central place hierarchy.
For weights \(w_{k,i} = \frac{\Delta i+k}{\Delta i+k+i} \),

\[
\frac{Y_{i+1}}{Y_i} = \frac{1}{2} = \frac{1}{2} \sum_{k=0}^\infty w_{k,i} \left(\frac{\Delta i+k+1}{\Delta i+k} - 1 \right).
\]

Therefore,

\[
\frac{1}{2} \left(\frac{1}{\rho} - 1 \right) \leq \frac{1}{2} \sum_{k=0}^\infty w_{k,i} \left(\frac{\Delta i+k+1}{\Delta i+k} - 1 \right) \leq \frac{1}{2} (\rho - 1).
\]

The closer the bound on the ratios of the increments between two adjacent layers is to 1, the better the approximation to Zipf’s law. In other words, Zipf’s law only requires the increments of the fraction of goods between two adjacent layers not to vary too much.

4.1.2 A finite-layer example

Before proceeding to giving theorems regarding \(F(.) \) based on infinitely layers, I first provide an example of a distribution function giving finite layers and Zipf’s law. Recall that, by (1), the number of layers is essentially determined by the ratio \(\bar{y}/y \).

Example 1 (Logarithmic function). Suppose that \(F(y) = \frac{\ln y - \ln \bar{y}}{\ln y - \ln \bar{y}} \) on \([y, \bar{y}]\) with \(y > 0 \). Then, \(z_i - z_{i+1} = F(y_i) - F(y_{i+1}) = \frac{2\ln 2}{\ln y - \ln \bar{y}} \), and for large \(I \),

\[
\frac{Y_{i+1}}{Y_i} = \left(\frac{1}{2} \right)^i - \left(\frac{1}{2} \right)^I \approx \frac{1}{2}.
\]

Figure 7 presents numerical Zipf’s plots under this distribution function. The right panel in Figure 7 has a larger support of \(F \) than the left one; hence, it has more layers (24) than the left one (6). The \((R^2, \text{slope})\) pairs are \((0.993, -0.85)/(0.999, -0.983)\). The larger (red) dots are the actual plot, and the smaller (green) dots represent the limit case (Zipf’s law).²⁹

Several interesting observations are in order. First, Zipf’s plots are almost straight and slightly concave. Second, in terms of the slope, Zipf’s plots always fit slopes less than 1. To increase \(I \), the right plot has a larger \(\bar{y} \) than the left one. It is evident that as there is “more space” to accommodate more layers, Zipf’s plot is pulled straight (note the \(R^2\)), and the slope increases toward 1.Last, one can observe the larger deviation around the very small cities in the graphs of Figure 7. Notice that because the market area is shrinking in half over layers, and the increments of fractions are a constant, the size of a city is a finite

²⁹The parameters used are \(a = 1, b = 4, t = 10 \), and the \(\bar{y} \) used to generate the 6/24-layer case is 1339.4/7.896 \(\times 10^{13} \). The equilibrium \(L_1 \) is picked at 1.5\(L_1[\bar{y}] \).
geometric series. Since an infinite geometric series gives the power law, the deviation of the larger cities is smaller. As, as one runs a regression with such a Zipf’s plot, the concavity at one end will actually give the impression of under-representation at both ends, a stylized fact widely noted.

4.1.3 The limit theorem

The limit theorem provided below can be viewed as a generalization to the example above with infinite layers.

Definition 4. A function g is said to be regularly varying at zero if, for any $u > 0$, there exists $\rho \in \mathbb{R}$ such that

$$\lim_{y \downarrow 0} \frac{g(uy)}{g(y)} = u^\rho.$$

When $\rho = 0$, g is said to be slowly varying.

The Uniform Convergence Theorem (UCT) for slowly varying functions says that this convergence is uniform for all u in compact sets of $(0, \infty)$.\(^{30}\)

The following lemma is the key to the limit theorem.

Lemma 2 (Regularly varying density). Suppose F has support $(0, 1]$ with density f that satisfies

$$f(y) = y^{\alpha-1} \ell(y),$$

where $\alpha \geq 0$ and $\ell(y)$ is a slowly varying function at zero. Then,

$$\lim_{y \downarrow 0} \frac{F(y) - F(\theta y)}{F(y/\theta) - F(y)} = \theta^\alpha.$$

\(^{30}\)See p. 6 of Bingham et al. (1987).
Proof. For \(\alpha \geq 0 \), we have
\[
\frac{F(\theta y) - F(y)}{\ell(y)} = \int_{y}^{\theta y} \frac{\ell(x)}{\ell(y) x^{1-\alpha}} \, dx = y^{\alpha} \int_{1}^{\theta} \frac{\ell(yu)}{\ell(y) u^{1-\alpha}} \, du.
\]
Using the Uniform Convergence Theorem for slowly varying functions,
\[
\lim_{y \downarrow 0} \frac{F(\theta y) - F(y)}{y^{\alpha} \ell(y)} = \lim_{y \downarrow 0} \int_{1}^{\theta} \frac{\ell(yu)}{u^{1-\alpha}} \, du = \int_{1}^{\theta} \frac{du}{u^{1-\alpha}} = \frac{\theta^{\alpha} - 1}{\alpha}.
\]
Note that this limit is equal to \(\ln(\theta) \) when \(\alpha = 0 \). Hence, for any positive \(\theta \),
\[
\lim_{y \downarrow 0} \frac{F(y) - F(\theta y)}{F(y/\theta) - F(y)} = \lim_{y \downarrow 0} \frac{F(y) - F(\theta y)}{\frac{F(y/\theta) - F(y)}{y^{\alpha} \ell(y)}} = \theta^{\alpha}.
\]

With \(y = 0 \) and \(\bar{y} \) normalized to 1, we assume that \(\bar{y} \) firms earn zero profit so that \(y_{i} = 4^{-i+1} \). In this case, \(\theta = 1/4 \).

Proposition 3 (Level approximation). Suppose \(F \) has support \((0,1] \) and a density of the form \(f(y) = y^{\alpha-1} \ell(y) \), where \(\alpha \geq 0 \), and \(\ell(y) \) is a slowly varying function at zero. Then,
\[
\lim_{i \to \infty} \frac{Y_{i}}{F(y_{i}) - F(y_{i+1})} \propto \frac{1}{1 - \frac{1}{2^{1+2\alpha}}}.
\]

Proof. We write \(Y_{i} \) as
\[
\frac{Y_{i}}{F(y_{i}) - F(y_{i+1})} \propto \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{F(y_{i+k}) - F(y_{i+k+1})}{F(y_{i}) - F(y_{i+1})}.
\]
Note that
\[
\frac{F(y_{i+k}) - F(y_{i+k+1})}{F(y_{i}) - F(y_{i+1})} = \prod_{m=i}^{i+k-1} \frac{F(y_{m+1}) - F(y_{m+2})}{F(y_{m}) - F(y_{m+1})}.
\]
Lemma 2 implies that for any \(\epsilon \in (0, \theta^{\alpha}) \), there is an \(M \) so that for \(m \geq M \)
\[
\theta^{\alpha} - \epsilon \leq \frac{F(y_{m+1}) - F(y_{m+2})}{F(y_{m}) - F(y_{m+1})} \leq \theta^{\alpha} + \epsilon.
\]
This, in turn, implies that there is an \(N \) so that for all \(i \geq N \) and for all \(k \in \mathbb{N} \),
\[
(\theta^{\alpha} - \epsilon)^{k} \leq \frac{F(y_{i+k}) - F(y_{i+k+1})}{F(y_{i}) - F(y_{i+1})} \leq (\theta^{\alpha} + \epsilon)^{k}.
\]
Hence, given any \(\epsilon \in (0, \theta^{\alpha}) \), we have
\[
\frac{1}{1 - \frac{1}{2}(\theta^{\alpha} - \epsilon)} = \sum_{k=0}^{\infty} \left(\frac{\theta^{\alpha} - \epsilon}{2} \right)^{k} \leq \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{F(y_{i+k}) - F(y_{i+k+1})}{F(y_{i}) - F(y_{i+1})} \leq \sum_{k=0}^{\infty} \left(\frac{\theta^{\alpha} + \epsilon}{2} \right)^{k} = \frac{1}{1 - \frac{1}{2}(\theta^{\alpha} + \epsilon)},
\]
for all but finitely many \(i \). Since we can choose any \(\epsilon \) from \((0, \theta^{\alpha}) \), the result follows by noting that \(\theta = 1/4 \).
With Proposition 3, we have the approximation
\[Y_i \sim \frac{\mu}{1 - \frac{1}{2^{1+\alpha}}} \times \frac{1}{2^i} [F(y_i) - F(y_{i+1})], \] (2)
for some constant \(\mu \). This implies
\[\lim_{i \to \infty} \frac{Y_{i+1}}{Y_i} = \frac{1}{2^{1+2\alpha}}. \]

This is simply a multiple of the first term in the sum that defines \(Y_i \). It is straightforward to verify that the above limit implies a Pareto distribution with a tail index of \(\frac{1}{1+2\alpha} \). Thus, Zipf’s law is approximated for an \(\alpha \) close or equal to 0. In the level approximation (3), the multiple could be thought of the “price-dividend” ratio in the stock price analogy. The larger the \(\alpha \), the more rapidly the increments \(F(y_{i+k}) - F(y_{i+k+1}) \) decline; therefore, the smaller the multiple of the initial term one needs to approximate \(Y_i \).

Here, we can note the similarity between the limit theorem and the finite-layer example (Example 1). The density of Example 1 is \(\frac{1}{y} \ln(\bar{y}/y) \), which is not well-defined should \(y = 0 \). It is possible to introduce a slowly varying function so that \(\frac{1}{y} \ell(y) \) is a well-defined density on \((0, 1]\), and the basic result to Zipf’s law holds. Obviously, Zipf’s law holds approximately when the density is \(y^{\alpha-1} \ell(y) \) with \(\alpha \) being a small positive number.

It is easy to verify that the following two densities with \(\alpha = 0 \) have a slowly varying \(\ell(y) \).

Example 2. Suppose \(F(y) = 1/(1 - \ln(y)) \). Then,
\[f(y) = \frac{1}{y(\ln(y) - 1)^2}. \]

Example 3. Suppose \(F(y) = \exp(1 - \sqrt{1 - \ln(y)}) \). Then,
\[f(y) = \frac{\exp(1 - \sqrt{1 - \ln(y)})}{2y\sqrt{1 - \ln(y)}}. \]

The second of the following two examples with \(\alpha > 0 \) is the familiar gamma density.

Example 4. Suppose \(F(y) = y^\alpha \) for some \(\alpha > 0 \). Then, \(f(y) = \alpha y^{\alpha-1} \). Moreover,
\[Y_i \propto \frac{1 - \frac{1}{2^{1+\alpha}} \left(\frac{1}{2^{1+2\alpha}} \right)^i}{1 - \frac{1}{2^{1+2\alpha}}}. \]

Example 5. Suppose \(f(y) = cy^{\alpha-1} e^{-y/\beta} \), where \(\alpha, \beta > 0 \), and \(c > 0 \) is a constant that can be chosen to make this a probability density on \((0, 1]\). This simply modifies the power density with an exponential function which is slowly varying at 0.

In general, all of these densities have most of their masses near 0; hence, they are single peaked near 0. Thus, the requirement for Zipf’s law is that most of the goods in the economy have a relatively small fixed cost. Figure 8 shows a graph of gamma density with \(\alpha = 0.026 \) and \(\beta = 2 \).
4.2 The NAS Rule

Mori et al. (2007) show that the NAS rule and Zipf’s law are “essentially” equivalent if the hierarchy property holds. Furthermore, the observed slopes of NAS plots of data from both Japan and the US are significantly lower than 1. The model setups of their paper and this one are different, and, hence, the statements of the propositions regarding the links between the two rules are also somewhat different. Here, I provide a simple proof for the NAS rule and the fact that the slope is lower than 1 and converges toward 1.

Recall that the number of cities in layer i is $2^i - 2$ for $i \geq 2$. Thus, the average size of cities producing $y \in [y_{i+1}, y_i]$ is

$$AS_i = \frac{Y_1 + \sum_{k=2}^{i} 2^{k-2}Y_k}{R_i}. \quad (3)$$

Therefore, i is now not only an index for layers of cities, but also for the industry groups $((y_{i+1}, y_i])$ located exclusively in cities no smaller than layer-i cities. Moreover, the fact that the number of cities producing $(y_{i+1}, y_i]$ equals to the number of cities up to layer-i (R_i) is a result of the hierarchy property. Consider the city size distribution being a Pareto distribution with a Zipf’s coefficient of $\frac{1}{1+2\alpha}$. That is, suppose $\frac{Y_{i+1}}{Y_i} = \frac{1}{2^{1+2\alpha}}$, with $\alpha \geq 0$, then we have Proposition 4.\footnote{This result is slightly different from that in Mori et al. (2007), as they show that if the size distribution of cities is Pareto with Zipf’s coefficient β, the NAS slope converges to β, as well.} For the purpose of investigating the slope of an NAS plot, we can think of the index $i \geq 1$ as if i were a real number.

Proposition 4 (The NAS rule). Suppose $y = 0$; hence, there exists infinitely many layers
of cities. Suppose \(Y_{i+1} = \frac{1}{i^{1+\alpha}} \), with \(\alpha \in [0,0.5) \). Then, \(\frac{d\ln AS_i}{d\ln R_i} \) is strictly decreasing in \(i \),

\[
0 > \frac{d\ln AS_i}{d\ln R_i} > -1,
\]

and

\[
\lim_{i \to \infty} \frac{d\ln AS_i}{d\ln R_i} = -1.
\]

Proof. First, consider \(\alpha = 0 \), that is, the exact Zipf’s law case. Then, (3) can be rewritten as

\[
\ln AS_i = \ln \left(\frac{Y_1}{2} \right) + \ln(i + 1) - \ln R_i.
\]

Let \(v = \ln AS_i \), and let \(s = \ln R_i = (i - 1) \ln 2 \). Thus, we can rewrite the above equation as

\[
v = \ln \left(\frac{Y_1}{2} \right) - s + \ln \left(\frac{s}{\beta} + 2 \right).
\]

which implies that (4) and (5) are true, since \(s > 0 \), and \(s \to \infty \) as \(i \to \infty \). For \(\alpha > 0 \), let \(\beta = 2^{2\alpha} \). Then, (3) can be rewritten as

\[
\ln AS_i = \ln Y_1 + \ln \left[1 + \beta \ln \left(\frac{s}{\beta} + 2 \right) \right] - \ln R_i.
\]

It is readily verified that

\[
\frac{d\ln AS_i}{d\ln R_i} = \frac{dv}{ds} = -1 + \frac{1}{s + 2 \ln 2},
\]

which immediately implies that (5) is true. That \(\frac{d\ln AS_i}{d\ln R_i} > -1 \) follows from the fact that \(\beta > 1 \) and \(s \geq 0 \). To show that \(\frac{d\ln AS_i}{d\ln R_i} < 0 \), we need to show that the second term on the right-hand side in (7) is less than 1, which would be true if

\[
\frac{\beta^{1-\frac{s}{\beta^2}}}{3\beta - 2 - \beta^{1-\frac{s}{\beta^2}}} < \frac{1}{2\alpha}.
\]

Observe that

\[
\frac{\beta^{1-\frac{s}{\beta^2}}}{3\beta - 2 - \beta^{1-\frac{s}{\beta^2}}} \leq \frac{\beta}{2(\beta - 1)} = \frac{2^{2\alpha-1}}{2^{2\alpha} - 1} < \frac{1}{2\alpha}.
\]

The last inequality follows from the fact that \(\alpha \in (0,0.5) \). That \(\frac{d\ln AS_i}{d\ln R_i} \) is strictly decreasing in \(i \) follows directly from (6) and (7). \(\square \)
Proposition 4 indicates that the NAS plot is concave, and the concavity should be rather small if the number of layers is large enough. Indeed, we do observe a slight concavity of NAS plots in the US data. See Figure 3. Next, I show a (finite-layer) numerical example using the distribution function F in Example 1. The left/right panel of Figure 9 is the NAS plot with 6/24 layers. The distribution and parameters used are the same as those used for Zipf’s plots (Figure 7). From Figure 9, we see that the NAS plots are almost straight and slightly concave. The (R^2, slope) pairs for the logarithmic function are $(0.970, -0.62)/(0.996, -0.85)$ for 6/24 layers.

4.3 Zipf’s Law for Firms

Not only is the central place hierarchy a hierarchy of cities, but it is also a hierarchy of firms. Any firm producing $y \in (y_{i+1}, y_i]$ has the same size $L_i = \frac{L_{i+1}}{2^{i+1}} \equiv s_i$. Call this size type of firms class-i. Also note that the measure of class-i firms, m_i, is $2^{i-1}(F(y_i) - F(y_{i+1})) = 2^{i-1}(z_i - z_{i+1})$. Consider the accumulative measure of firms of classes up to i as the rank of class-i firms:

$$M_i = \sum_{k=1}^{i} m_k.$$

Indeed, the mechanical conditions for a firm size distribution to follow Zipf’s law are very similar to those for a city size distribution (Proposition 2).32 Since $\frac{s_{i+1}}{s_i} = \frac{1}{2}$, we need to show that $\frac{M_{i+1}}{M_i}$ is approximately 2.

32However, other analytical results shown in Section 4.1 are not available for firm size distribution, because in order for the limit theorem to work, we need unbounded support for fixed cost distribution, which, in turn, implies the nonexistence of an equilibrium. This is because we always need the maximal fixed cost to be bounded in order to have a finite distance between two layer-1 cities.
Proposition 5 (Bounds proposition on firm size distribution). Suppose there are I layers in a central place hierarchy, where $I \in \mathbb{N} \cup \{\infty\}$. Suppose there is a $\rho > 1$ such that for all $i \leq I$,

$$\frac{1}{\rho} \leq \frac{\Delta_{i+1}}{\Delta_i} \leq \rho.$$

Then,

$$\left(\frac{2}{\rho}\right)^{i+1} - 1 \leq \frac{M_{i+1}}{M_i} \leq \frac{(2\rho)^{i+1} - 1}{(2\rho)^i - 1}.$$

Proof. Observe that

$$\frac{M_{i+1}}{M_i} = \frac{\sum_{k=1}^{i+1} 2^k \Delta_k}{\sum_{k=1}^{i} 2^k \Delta_k} = 1 + \frac{2^{i+1}}{\sum_{k=1}^{i} 2^k \left(\prod_{s=k}^{i} \Delta_{s+1}\right)}.$$

Hence,

$$1 + \frac{2^{i+1}}{\rho^{i+1} \sum_{k=1}^{i} \left(\frac{2}{\rho}\right)^k} \leq \frac{M_{i+1}}{M_i} \leq 1 + \frac{2^{i+1}}{\sum_{k=1}^{i} (2\rho)^k}.$$

$$\Longleftrightarrow \quad \frac{\left(\frac{2}{\rho}\right)^{i+1} - 1}{\left(\frac{2}{\rho}\right)^i - 1} \leq \frac{M_{i+1}}{M_i} \leq \frac{(2\rho)^{i+1} - 1}{(2\rho)^i - 1}.$$

Proposition 5 implies that $\lim_{\rho \to 1} \frac{M_{i+1}}{M_i} = \frac{2^{i+1} - 1}{2^i - 1}$, which means that $\frac{M_{i+1}}{M_i}$ is approximately 2 for large enough i’s and for ρ close enough to 1. In general, we need the number of layers I to be large for Zipf’s law to emerge. If we use the distribution function of fixed cost in Example 1, we indeed get $\Delta_{i+1}/\Delta_i = 1$, and $\frac{M_{i+1}}{M_i}$ exactly equals to $\frac{2^{i+1} - 1}{2^i - 1}$. Obviously, the convergence of $\frac{M_{i+1}}{M_i}$ to 2 is very fast in this case, as is evident from Figure 10, which shows two plots with 6/24 layers. The (R^2, slope) pairs are $(0.993, -0.85)/(0.999, -0.983)$. The larger (red) dots are the actual plot, and the smaller (green) dots represent the limit case (Zipf’s law).\footnote{The parameters used are $a = 1$, $b = 4$, $t = 10$, and the \bar{y} used to generate the 6/24-layer case is $1339.4/7.896 \times 10^{13}$. The equilibrium L_1 is picked at $1.5L[\bar{y}]$.} Interesting, the plots are slightly concave and have fitted slopes greater than 1, which is also a known fact noted in Luttmer (2007).
5 The General Model: Workers and the Home Market Effect

5.1 The Extension

5.1.1 Extension of model setup

In addition to the farmers and firms in the basic model, there is a third type of agents: workers. Assume that the variable input takes labor and that fixed cost is not in terms of labor. Hence, the marginal cost of production is \(c(x) = \phi w(x) \), where \(w(x) \) denotes the wage at the location \(x \). Each worker is endowed with one unit of labor time and has reservation utility of \(u \). Workers play the two-stage game simultaneously with other types of agents. In the first stage, they decide whether or not to enter; and each entrant worker has to pick a location. In the second stage, workers, together with farmers, are consumers who decide whether to buy and from which firm to buy, for each good.

Assume that the consumption value of each good for any worker is \(\bar{p} \), and that workers can home supply (not using labor) themselves any good with a unit cost \(r \). Thus, \(r \) is the reservation price. Workers make a discrete choice of \(\{0, 1\} \) unit of consumption for any good. For simplicity, assume that \(\bar{p} > r \) so that each worker also consumes one unit of each good. Denote equilibrium prices charged to workers as \(p_{w}(x, y) \). Entering at a location \(x \) and facing the equilibrium price \(p_{w}(x, y) \), the worker at \(x \) enjoys the following utility:

\[
\begin{align*}
u(x) &= \int_{0}^{1} (\bar{p} - \min\{p_{w}(x, y), r\})dF(y) + w(x). \tag{8}
\end{align*}
\]

We can think of the farmers as having a reservation price \(r \) different from that for workers and so large that they always buy goods from the markets.
Assume that the commuting cost is infinity so that any worker who resides at a location \(x \) without any production receives zero wages.

5.1.2 Equilibrium definition

Let \(p_f(x, y) : \mathbb{R} \times [0, 1] \rightarrow \mathbb{R}_+ \) be the price of a type-\(y \) good facing farmers at \(x \), and let \(p_w(., .) \) be that for workers. Let \(w(x) : \mathbb{R} \rightarrow \mathbb{R}_+ \) be the wage at \(x \). Let \(j(x, y, x') : \mathbb{R} \times [0, 1] \times \mathbb{R} \rightarrow \{0, 1\} \) be the purchase decision of a consumer at \(x' \) on the type-\(y \) good produced by a firm at \(x \). Let \(\iota(x, y) : \mathbb{R} \times [0, 1] \rightarrow \{0, 1\} \) be the indication function of whether a firm producing a type-\(y \) good sets up at \(x \). Also, \(N(x) : \mathbb{R} \rightarrow \mathbb{R}_+ \) is the total measure of workers at \(x \), and \(Y(x) : \mathbb{R} \rightarrow \mathbb{R}_+ \) represents the total units of all types of goods produced at \(x \).

The market clearing for each local labor market and the markets for goods requires

\[
N(x) = \phi Y(x),
\]

\[
Y(x) = \int_0^1 \iota(x, y) \left[\sum_{\{x' : j(x, y, x') = 1\}} N(x') + \int_0^1 j(x, y, x') dx' \right] dF(y).
\]

Definition 5. An equilibrium is a collection \(\Gamma = \{\iota(., .), N(., .), p_w(., .), p_f(., .), w(., .), j(., ., .), Y(.)\} \) such that for each type \(y \), the allocation prescribed by \(\Gamma \) constitutes an SPNE and markets clear ((9) and (10)).

A hierarchy equilibrium is defined in the same way as that in the basic model.

5.2 Hierarchy Equilibrium

5.2.1 Constant wage

If wages vary across locations, it is unlikely for an hierarchy equilibrium with more than four layers to exist because the marginal costs differ across locations. Therefore, we should focus on the economy with a constant wage. For a reason to be seen soon, a constant wage across locations is guaranteed if the reservation price \(r \) is small enough such that

\[
r \leq \frac{\phi}{1 - \phi} (\bar{u} - \bar{p}).
\]

When the above parameter constraint does not hold, then we need \(r \) not to be too large than \(\frac{\phi}{1 - \phi} (\bar{u} - \bar{p}) \) to ensure a constant wage. With a constant wage \(w \) and the corresponding constant marginal cost \(c = \phi w \), it is useful to distinguish three cases of hierarchy equilibria:

- \(r < c \),
- \(r = c \),
- \(r > c \).

One can quickly see that the hierarchy equilibria characterized in the basic model is, indeed, the case of \(r \leq c \). When \(r < c \), workers home supply themselves all goods since no
firm would offer a price lower than its marginal cost. When \(r = c \), workers only buy goods that are produced by local firms and home supply themselves the rest of the goods because the “after-delivery” marginal cost (i.e., the marginal cost plus transportation cost) must be higher than \(r \) if the good is not provided by a nonlocal firm. In both cases, firms derive their profit only from sales to farmers, and the model is reduced to the basic one. Since the living cost for workers must be \(r \) at any location in both cases, a constant wage \(w = \bar{u} - \bar{p} + r \) can attract workers to enter at any location, by (8). Rearranging \(r \leq c \) by substituting \(c \) with \(\phi (u - \bar{p} + r) \) entails the constraint (11).

When the constraint (11) fails to hold, or, equivalently, when \(r > c \), we need an additional condition to ensure a constant wage. That is, we need the minimum distance between two production locations to be large enough for the wage to be a constant. To see this, suppose that \(c(x) = c \) for some \(c > 0 \). If the minimum distance in equilibrium between two production locations is greater than \(r - c \), that is, if

\[
e = \frac{r - c}{t} < \min_y \left\{ \min_{x \neq x'} \min_{\epsilon(x,y)=\epsilon(x',y)=1} |x - x'| \right\},
\]

then \(r \) is less than the “after-delivery” marginal cost of any good supplied by any nonlocal firm. This, again, implies that workers buy those goods supplied by local firms and home supply themselves for the other goods. Thus, again, \(w = \bar{u} + r - \bar{p} \) and \(c(x) = c = \phi w = \phi (u + r - \bar{p}) \). Another way to look at (12) is that we need \(r - \frac{\phi}{1 - \phi} (u - \bar{p}) \) not be too large relative to the transportation cost \(t \). In terms of central place hierarchy, (12) can be written as

\[
\frac{r - c}{t} = 1 - \phi \frac{r - \phi (u - \bar{p})}{1 - \phi (u - \bar{p})} < L_I,
\]

and this requires the number of layers to be finite. In the rest of the paper, I shall assume that the condition (13) holds. Although (13) is an equilibrium object, we should think of this constraint as requiring either \(r \) being only slightly larger than \(\phi (u - \bar{p}) \) or \(t \) being large enough.

Notice that if a worker enters a location where no firm sets up, she enjoys a utility smaller than \(\bar{p} - c \). Hence, to make sure no worker would enter at a location where no firm sets up, I assume \(u \geq \bar{p} - c \), or, equivalently,

\[
r \geq \frac{1 + \phi}{\phi} (\bar{p} - u).
\]

5.2.2 Hierarchy equilibrium and the home market effect

If the firm location \(\iota(., .) \) is known, then purchase choices \(j(., ., .) \) and prices \(p_f \) can be easily figured out. Because the reservation price for workers \(r \) is close to the marginal cost \(c \), the effective \(p_w(x, y) = r \) if \(y \) is supplied locally at \(x \) and \(p_w(x, y) = p_f(x, y) \) if \(y \) is not
supplied locally. Therefore, if \(\iota(.,.) \) is known, then an equilibrium is characterized by the corresponding \(j, p_f, p_w, w(x) = u + r - \bar{p} \), and the \(Y(.) \) and \(N(.) \) that satisfies (9) and (4').

\[
Y(x) = \int_{0}^{1} \iota(x, y) \left[N(x) + \int_{-\infty}^{\infty} j(x, y, x') dx' \right] dF(y). \tag{4'}
\]

Of course, \(\iota \) must be such that: (a) each firms maximize its profits, given the location of other firms; (b) any firm’s profit must be nonnegative; and (c) there is no location where a new entrant can earn positive profit, given others’ locations. The profit of a type-\(y \) firm producing at location \(x \) is

\[
\pi(x, y) = \int_{-\infty}^{\infty} (p(x', y) - c) j(x, y, x') dx' + (r - c) N(x) - F^{-1}(y). \tag{15}
\]

The first term on the right-hand-side is the gross profit from farmers, and the second term is from local workers.

Consider the equilibrium taking the form of a central place hierarchy, and suppose that (13) holds. Then, the profit for a firm with \(y \in (y_{i+1}, y_i] \) is

\[
\pi(x, y) = \frac{tL^2}{2} + (r - c) N(x) - y.
\]

The following proposition shows that central place hierarchies also exist in this case of \(r > c \).

Proposition 6 (Central place hierarchy). Suppose that \(F(.) \) is continuous and that (13) holds. Then, there exist central place hierarchies characterized by \(\{Y_i, N_i, y_i, L_i\}_{i=1}^{I} \) and \(I \) such that

1. \(L_1 \) satisfies

\[
\frac{tL^2_1}{2} + (r - c) N_1 - \bar{y} \geq 0, \quad \frac{tL^2_2}{2} + (r - c) N_2 - \bar{y} < 0. \tag{16}
\]

2. For \(i \geq 2 \),

\[
y_i = \frac{tL^2_i}{2} + (r - c) N_i, \quad L_i = \frac{L_1}{2^{i-1}}. \tag{17}
\]

3. For all \(i \in 1, 2, ..., I \),

\[
Y_i = F(y_i)N_i + \sum_{k=i}^{I} [F(y_k) - F(y_{k+1})] L_k, \tag{18}
\]

\[
N_i = \phi Y_i. \tag{19}
\]

4. \(I \) is the largest integer satisfying \(\frac{tL^2_1}{2} + (r - c) N_1 \geq y \).
Proof. Using Points 1, 2, 4, the argument for each good being in SPNE is the same as Proposition 1 under the $r \leq c$ case. The additional profits from sales to workers do not alter the nature that firms would prefer to be located in the middle between their neighbors if the desired middle location has workers living there. The rest of the proof shows that a solution satisfying Points 1 to 4 exist. Observing (17), (18) and (19), \(\{Y_i, N_i, L_i\}_{i=1}^I\) are obviously decreasing sequences. Combining (17), (18) and (19), we get

\[y_i = \frac{tL_i^2}{2} + \frac{\phi(r-c)}{1-\phi F(y_i)} \sum_{k=i}^I [F(y_k) - F(y_{k+1})]L_k. \]

Looking at (20) recursively back from layer-\(I\) cities,

\[y_I = \frac{tL_I^2}{2} + \frac{\phi(r-c)}{1-\phi F(y_I)} F(y_I)L_I. \]

Given \(L_1\) and \(I\), note that \(F(0) = 0\) and \(F(\infty) = 1\) and define

\[\Gamma_I(y; L_1) = \frac{tL_I^2}{2} + \frac{\phi(r-c)}{1-\phi F(y)} F(y)L_I - y. \]

Hence, \(\Gamma_I(0) > 0\) and \(\Gamma_I(\infty) < 0\). Since \(F(\cdot)\) is left continuous, a solution to \(\Gamma_I(y) = 0\) exists. Denote the solution as \(y_I^\ast\). Solve for such a solution for each \(I\), and find the \(I\) such that \(y_I^\ast < y \leq y_{I+1}^\ast\). Then, redefine \(y_i^\ast +1 = y_i\).

Define similar mappings of \(\Gamma_i(y)\) recursively using (20) and given \(y_i^\ast_{i+1}, y_i^\ast_{i+2}, \ldots, y_i^\ast\). We thus get a correspondence of vectors dependent on \(L_1\), \(y(L_1) = \{y_i^\ast(L_1)\}_{i=1}^I\) with \(y_i^\ast(L_1) > y_i^\ast_{i+1}(L_1)\) for all \(i\)'s. \(y(L_1)\) is strictly increasing in \(L_1\). (16) can be rewritten as

\[y_1^\ast(L_1) - \bar{y} \geq 0, \quad y_2^\ast(L_1) - \bar{y} < 0. \]

Indeed, because \(F(\cdot)\) is continuous, \(\Psi(L_1) = y_1^\ast(L_1) - \bar{y}\) has a closed graph, \(\Psi(0) < 0\), and \(\Psi(\infty) > 0\). Thus, there exists \(L_1^\ast\) such that \(\Psi(L_1^\ast) = \epsilon' \geq 0\) while \(\epsilon'\) can be arbitrarily small. That is, there exists \(L_1^\ast\) such that Point 1 (or, equivalently, (22)) holds.

Given \(L_1\), the hierarchy equilibrium in the case of \(r > c\) is no longer unique as opposed to the case of \(r \leq c\). This is because \(y(L_1)\) may have multiple solutions, and hierarchy equilibria in which the central place property does not hold may also exist, e.g., two or more layer-2 cities may exist between two layer-1 cities. However, the home market effect exists in the case of \(r > c\).

Recall that, when \(r \leq c\), we can create a large set of equilibria from hierarchy equilibria by sliding all firms' locations for any arbitrary set of goods by the same distance and in the same direction. In other words, there is no particular reason why the hierarchy equilibria should be more plausible than others. However, when \(r > c\), such a deviation no longer
constitute an equilibrium as long as the deviation is small enough. In this sense, a central place hierarchy is “locally unique.” The following proposition shows this property of central place hierarchies for an arbitrary good. Apparently, this proposition holds for a measure-zero set of goods, as well.

Proposition 7 (Robustness to small even-spacing deviations). Suppose that \(r > c \) and that \(\{Y_i, N_i, y_i, L_i\}_{i=1}^I \) is the sequence that characterizes a central place hierarchy as described by Proposition 6. Consider the following deviation of locations from a central place hierarchy: for any arbitrary good, slide the locations of all firms producing that good by a distance \(\Delta \), and keep the locations for the other goods unchanged. If \(|\Delta| \in [0, \frac{r-c}{t}) \), then the new locations do not constitute an equilibrium.

Proof. Without loss of generality, assume that \(\Delta > 0 \). By (13), when \(\Delta < \frac{r-c}{t} \), each type-\(y \) firm still sells to the population \(N_i \) in its nearest layer-\(i \) city. Note that for each layer-\(i \) city with \(i < I \), its another closest city must be a layer-\(I \) city, and it is possible for a type-\(y \) firm to sell to both cities if \(L_i \leq 2(r-c)/t \). (Since then it is possible to have \(\Delta \leq \frac{(r-c)}{t} \) and \(L_i - \Delta \leq \frac{(r-c)}{t} \).) However, any type-\(y \) firm sells at most two cities, since \(\Delta < \frac{(r-c)}{t} \leq \frac{L_i}{2} \).

Now, consider the profit, denoted by \(\hat{\pi}_i(\delta) \), of a firm moving \(\delta \in [0, \frac{r-c}{t}) \) closer to its nearest layer-\(i \) city, given other firms’ locations. For \(y \in [y_i, y_{i+1}] \) with \(i < I \) and in the case where a type-\(y \) firm sells to two cities,

\[
\hat{\pi}_i(\delta) = \frac{t}{2} \left(L_i^2 - \delta^2\right) + \{r - [c + t(\Delta - \delta)]\}N_i + \{r - [c + t(L_i - \Delta + \delta)]\}N_i - y.
\]

The first-order derivative is

\[
\frac{d\hat{\pi}_i(\delta)}{d\delta} = t[(N_i - N_I) - \delta].
\]

Thus, given other firms’ location, \(\frac{d\hat{\pi}_i(0)}{d\delta} = t(N_i - N_I) > 0 \) implies that the optimal \(\delta \) must be positive. Thus, the type-\(y \) good is obviously not in equilibrium. In the case where a type-\(y \) firm only sells to one city, then simply remove the third term on the right-hand side of (23), and we have \(\frac{d\hat{\pi}_i(0)}{d\delta} = tN_i > 0. \)

For \(y \in [y_i, y_{i+1}] \), any type-\(y \) firm only sells to its nearest city, unless \(\Delta = L_i/2 \). Using similar arguments, when \(\Delta \neq L_i/2 \), each type-\(y \) firm has an incentive to move toward its nearest city, given other firms’ locations. When \(\Delta = L_i/2 \), assuming that sales to the workers in any city are evenly split up by the nearby two firms, then each type-\(y \) firm will have an incentive to move toward the larger city of the two nearest ones.

\[\Box\]

5.3 Zipf’s Laws for Cities

It is difficult to obtain analytical results when \(r > c \), since there are no closed form solutions to cutoffs \(y_i \). However, populations in cities are workers who work to feed farmers and
themselves, and thus, we expect the city populations to be derived from sales to farmers with an approximate “multiplier” effect. The case of \(r = c \) is an interesting transition point where firms sell to local workers but do not make profits from them. I will provide analytical results in this case as a simple extension from the \(r < c \) case. The analytical results under the case of \(r \leq c \) provide a basis for understanding the underlying reasons to the numerical results under \(r > c \).

Combining (18), and (19), we have

\[
N_i = \begin{cases}
\phi \sum_{k=i}^L L_i(F(y_i) - F(y_{i+1})), & r < c. \\
\left(\frac{1}{\phi} - F(y_i)\right)^{-1} \sum_{k=i}^L L_i(F(y_i) - F(y_{i+1})), & r \geq c.
\end{cases} \tag{A}
\]

5.3.1 Analytical results when \(r = c \)

Recall the three major analytical results in the basic model for Zipf’s law for cities: (1) the condition on the fractions of goods produced in different layers of cities for Zipf’s law, (2) the distribution function of fixed costs when the economy has only finite layers of cities, and (3) the class of distribution function when the economy has infinite many layers.

In Section 4, we define the size of a city as the total units of goods sold from it. Now that we have workers living in cities, we define city size as number of workers as in (A). Obviously, when \(r < c \), the two definitions are only different by a constant proportion, and, thus, all results follow. However, when \(r = c \), even though the hierarchy equilibria in this case is the same as \(r < c \), the firms start to sell to local workers, and the labor needed is now larger than the \(r < c \) case.

Nonetheless, it is easy to see that these three results also holds when \(r = c \). Observe (A) and note that the cutoffs \(y_i \)'s are the same between the two cases of \(r = c \) and \(r < c \), given all other parameters. Also observe that \(\left(\frac{1}{\phi} - F(y_i)\right)^{-1} \), in fact, converges to \(\phi \) when there are infinite layers. Therefore, we should have three similar results in the limit. The following corollary is one to Proposition 2 (result (1)).

Corollary 1. Suppose that \(r = c \) and that there are infinitely many layers in a central place hierarchy. Assume that \(\lim_{i \to \infty} z_i = 0 \).\(^{35}\) Suppose there is a \(\rho > 1 \) such that for all \(i \in \mathbb{N} \),

\[
\frac{1}{\rho} \leq \frac{\Delta_{i+1}}{\Delta_i} \leq \rho.
\]

Then, for any \(\epsilon > 0 \) there exists \(m > 0 \) such that for all \(i \geq m \),

\[
\frac{1}{2} \left(\frac{1}{\rho} - 1\right) - \epsilon \leq \frac{N_{i+1}}{N_i} - \frac{1}{2} \leq \frac{1}{2} (\rho - 1).
\]

\(^{35}\)Note that this condition is always satisfied in this model when \(y = 0 \).
Proof. That \(\lim_{i \to \infty} z_i = 0 \) implies that \(\lim_{i \to \infty} \frac{1 - \phi z_i}{1 - \phi z_{i+1}} = 1 \). Thus, for any \(\epsilon > 0 \), there exist \(m > 0 \) such that \(\frac{1 - \phi z_i}{1 - \phi z_{i+1}} - 1 \geq -\epsilon \). We have

\[
\frac{N_{i+1}}{N_i} - \frac{1}{2} = \left(\frac{1 - \phi z_i}{1 - \phi z_{i+1}} - 1 \right) \frac{Y_{i+1}}{Y_i} + \frac{Y_{i+1}}{Y_i} - \frac{1}{2},
\]

and the result follows Proposition 2.

Corresponding to result (2), suppose there are finite layers and the distribution functions is that in Example 1. Then, \(\Delta_i \) in Corollary 1 is a constant for all \(i \), and the corollary essentially holds if there are many layers.

Corresponding to result (3), suppose that \(F \) has support \((0,1]\) and a density of the form \(f(y) = y^{\alpha-1} \ell(y) \), where \(\alpha \geq 0 \), and \(\ell(y) \) is a slowly varying function at zero. Then, the size distribution is Pareto with a tail index of \(\frac{1}{1+2\alpha} \) since the following limit holds.

\[
\lim_{i \to \infty} \frac{N_{i+1}}{N_i} = \lim_{i \to \infty} \frac{\frac{1}{\phi} - F(y_i)}{\frac{1}{\phi} - F(y_{i+1})} \frac{Y_{i+1}}{Y_i} = \lim_{i \to \infty} \frac{Y_{i+1}}{Y_i} = \frac{1}{2^{1+2\alpha}}.
\]

The last equality follows from Proposition 3.

5.3.2 The Comparative statics of \(r \)

Let us now turn to the case of \(r > c \). As mentioned, we have to do numerical work to check the robustness of Zipf’s law results, and recall that we must limit the number of layers to be finite in this case. The algorithm of computing the size distribution is drawn from Proposition 6 and is briefly described below.

First, make a grid of \(L_1 \), running from the top down. Given each \(L_1 \) and \(L_I = L_1/2^{I-1} \), we can solve \(y_I \) by (21) for each \(I \in \mathbb{N} \). The larger the \(I \), the smaller the \(y_I \). The \(y_I(L_1) \) and \(I(L_1) \) are those satisfying \(y_I \geq \bar{y} \) and \(y_{I+1} < \bar{y} \). After \(I(L_1) \) and \(y_I(L_1) \) are pinned down, solve \(y_i \) recursively using (20) and backwardly from \(y_{i-1} \) to \(y_1 \). Thus, we get a sequence \(\{y_i(L_1)\}_{i=1}^I \). Find the \(L_1 \) such that \(y_1(L_1) \geq \bar{y} \) and \(y_2(L_1) < \bar{y} \). Redefine \(y_1 = \bar{y} \). Given \(L_1 \) and \(y_i \), \(\{Y_i, N_i, L_i\}_{i=1}^I \) are calculated according to Proposition 6.

The analytical results under the \(r \leq c \) case are based on the fact that city populations are proportional or close to proportional to the sales to farmers. We want to see how this can extend to the case of \(r > c \). Also, one might worry whether Zipf’s law result will hold only when the city population is a trivial fraction of the overall population. Thus, I will also report the “worker-farmer ratio” in the numerical results.

\[
\lambda = \frac{N_1 + \sum_{i=2}^I 2^{i-2}N_i}{L_1}.
\]
Fixing some $\phi < 1$, we can examine how city size distribution changes when r changes. It is particularly interesting if $u > \bar{p}$36 so that the sign of $r - c$ can be either positive, negative, or zero, since

$$r - c = (1 - \phi)r - \phi(u - \bar{p}).$$ \hspace{1cm} (24)

By changing r, we can see how city size distribution changes from the $r \leq c$ case to the $r > c$ case.

Equate (24) to zero and denote the solution as $\hat{r} = \phi(u - \bar{p})/(1 - \phi)$. Make a grid by evenly dividing $(0.5\hat{r}, 1.5\hat{r}]$. Fixing all other parameters,37 the results of varying r are as follows.

For all r, the number of layers is 10. First, Zipf’s coefficient for the first 8 layers is 0.9766 for all $r < \hat{r}$, i.e., $r < c$. It drops to 0.9068 for $r = \hat{r}$ ($r = c$) and constantly rises for $r > \hat{r}$ ($r > c$) when r increases. However, the increase of Zipf’s coefficient is so minuscule that all of Zipf’s coefficients for $r > c$ are all approximately 0.9068, and the difference for $r = \hat{r}$ and $r = 1.5\hat{r}$ is only 1.1901×10^{-6}. The R^2 is 0.9998 for all $r < \hat{r}$ and is 0.9999 for all $r \geq \hat{r}$. The worker-farmer ratio increases from 0.4 to 0.5475 from the $r < c$ case to the $r \geq c$ case. This ratio, indeed, decreases over $r > c$, but the decrease is also minuscule.38

Changing r, of course, has no effect on the size distribution when $r < c$. When $r = c$, firms start to sell to local workers, but those sales do not factor into profits. Thus, cutoffs y_i’s are determined in the same way as the $r < c$ case, but the city populations must be larger for those larger cities, as they serve more people. This induces Zipf’s coefficient to drop, given that the size distribution is more dispersed. When $r > c$, the changes of the size distribution are minuscule perhaps because changes in the y_i’s are little.

The above observations of the drop of Zipf’s coefficient from $r < c$ to $r \geq c$ and minuscule increase of Zipf’s coefficient over $r \geq c$ are robust to different choices of ϕ. Nevertheless, the changes of Zipf’s coefficient when choosing different ϕ are much larger than those when changing r. We should next discuss this effect.

5.3.3 The comparative statics of ϕ

The parameter ϕ is the key “multiplying” factor to derive the city population from the base demand of farmers. On the one hand, the larger the ϕ, the larger the city labor is needed. On the other hand, the larger the ϕ, the larger the marginal cost of production, the smaller the profit, and hence, the less entry of goods is expected in any given city. However, there are no workers if $\phi = 0$. Thus, we should expect the first effect to be first order; hence, the

36Notice that (14) is satisfied when $u > \bar{p}$.

37I set $\phi = 0.4$, $\bar{u} = 2$, $\bar{p} = 1.5$, $\bar{y} = 10000$, $\bar{y} = 0.01$, and $t = 100000$.

38There is also a curvature for all 10 layers, as Zipf’s coefficient drops to 0.9194 ($r < c$) and 0.8665 ($r \geq c$). However, the curvature can only be said to be slight, given that the R^2 is 0.9956 ($r < c$) and 0.9966 ($r \geq c$). As mentioned, empirical studies of size distribution of cities constantly find slight curvatures.
larger the ϕ, the larger the worker-farmer ratio λ. If $\phi = 0$ and city size is defined to be Y_i, then all analytical results in the $r < c$ case hold true. Consequently, when we use the distribution functions giving rise to Zipf’s law in the $r < c$ case, we expect to see that the smaller the ϕ, the closer Zipf’s coefficient is to 1.

For simplicity, assume that $u = \bar{p}$. Hence, for any $\phi < 1$,

$$r - c = (1 - \phi)r > 0.$$

Using the distribution in Example 1, the following table confirms the intuitions regarding the comparative statics of ϕ.\(^{39}\) In all ϕ tried, the number of layers is 10. I run a regression of $\ln(R_i)$ on $\ln(N_i)$ for the first 8 layers to obtain the Zipf coefficient ζ, the R^2, and the worker-farmer ratio λ.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ζ</th>
<th>R^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.9695</td>
<td>0.9998</td>
<td>0.0516</td>
</tr>
<tr>
<td>0.25</td>
<td>0.9370</td>
<td>0.9998</td>
<td>0.2989</td>
</tr>
<tr>
<td>0.45</td>
<td>0.8953</td>
<td>0.9999</td>
<td>0.6488</td>
</tr>
<tr>
<td>0.65</td>
<td>0.8379</td>
<td>0.9999</td>
<td>1.2230</td>
</tr>
<tr>
<td>0.85</td>
<td>0.7453</td>
<td>0.9979</td>
<td>2.6261</td>
</tr>
</tbody>
</table>

Table 1: Comparative statics of ϕ.

The high R^2 for all ϕ shows that the size distribution is always Pareto regardless of the values of ϕ. Nonetheless, when this multiplying factor increases, while the worker-farmer ratio increases drastically, Zipf’s coefficient also drops significantly. Recall that Zipf’s law is robust across time and across countries. One would naturally say the empirical worker-farmer ratio (or, urban-rural population ratio) has increased drastically before and after the industrialization. Thus, the fact that Zipf’s coefficient drops significantly when ϕ changes is not an attractive feature.

However, one may also consider the effect of increasing commodity space $[y, \bar{y}]$ during the process of industrialization. As \bar{y}/y increases, the number of layers increases, and we have seen that this is also an important force entailing Zipf’s law. Thus, we turn to the comparative statics of \bar{y} next.

5.3.4 The comparative statics of \bar{y}

Again, using the distribution in Example 1, I run a regression of $\ln(R_i)$ on $\ln(N_i)$ for the first $I - 2$ layers and report the result in the following table.\(^{40}\) Table 2, indeed, shows that

\(^{39}\)The parameters are $u = \bar{p} = 2$, $\bar{y} = 10,000$, $y = 0.01$, $t = 100,000$, and $r = 0.3333$.

\(^{40}\)Fix parameters at $\phi = 0.8$, $u = 2$, $\bar{p} = 1.5$, $\bar{y} = 0.01$, $t = 10^5$, and $r = 2.2$.

34
Zipf’s law is better approximated when the commodity space becomes larger.

<table>
<thead>
<tr>
<th>\bar{y}</th>
<th>I</th>
<th>ζ</th>
<th>R^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^5</td>
<td>12</td>
<td>0.8065</td>
<td>0.9994</td>
<td>2.0184</td>
</tr>
<tr>
<td>10^7</td>
<td>15</td>
<td>0.8503</td>
<td>0.9995</td>
<td>1.9292</td>
</tr>
<tr>
<td>10^9</td>
<td>19</td>
<td>0.8772</td>
<td>0.9997</td>
<td>1.8713</td>
</tr>
<tr>
<td>10^{11}</td>
<td>22</td>
<td>0.8969</td>
<td>0.9997</td>
<td>1.8312</td>
</tr>
<tr>
<td>10^{13}</td>
<td>25</td>
<td>0.9033</td>
<td>0.9992</td>
<td>1.8235</td>
</tr>
</tbody>
</table>

Table 2: Comparative statics of \bar{y}.

Overall speaking, Zipf’s law for cities is approximated under $r > c$, either when ϕ is small, or when the fixed costs differ significantly across goods if ϕ is large.

5.4 The NAS Rule and Zipf’s Law for Firms

In the basic model, I have shown that if the size distribution of cities follows Zipf’s law and the hierarchy property holds, then the NAS rule holds. Notice that the definition of city size does not matter for Proposition 4, and, hence, the NAS rule also holds here in the same way. As to the Zipf’s law for firms, first note that the size of a firm under a hierarchy equilibrium is

$$ s_i = L_i + N_i. $$

Since $L_i = \frac{L_{i-1}}{2}$ is implied by the hierarchy equilibrium, $s_i = \frac{s_{i-1}}{2}$ as long as the conditions for Zipf’s law for cities holds. In light of Proposition 5, the condition for Zipf’s law for firms is the same as that in the basic model.

6 Conclusion

This paper provides a formal central place theory. Under central place hierarchies, Zipf’s law for cities holds when the distribution function of fixed cost is approximately logarithmic, e.g., Gamma distribution with a small shape parameter. Interestingly, the size distribution exhibits a slight concavity, an also well-known feature of city size distribution. Zipf’s law for firms holds under the same condition. The theory here predicts the NAS rule, as well, verifying the result in Mori et al. (2007) that Zipf’s law and the NAS rule are equivalent, provided that the hierarchy property holds.

In this paper, there is a proposition directly linking a central place hierarchy to Zipf’s law. That is, Zipf’s law holds if the increments of the fractions of goods provided by two
adjacent layers of cities are approximately the same and if the number of layers is large enough. Should future researches provide different economic mechanism deriving central place hierarchies, these conditions for Zipf’s law still applies.

The model allows a large set of equilibria, and the focus is on those consistent with the hierarchy property. Central place hierarchy is a hierarchy equilibrium with the ratio of market areas between two consecutive layers of cities being 2. However, central place hierarchies are only a subset of all possible equilibria, and the hierarchy equilibrium is seemingly as likely as other equilibria in the basic model. Moreover, the size definition in the basic model is not in terms of city workers. To address these problems, a general model incorporating the role of city workers and the home market effect is developed. Under certain conditions, central place hierarchies in the general model is locally unique in the sense that no perturbation locations of a measure-zero set of goods constitute an equilibrium. The results on Zipf’s laws and the NAS rule are numerically shown to be robust in the general model.

Last, I discuss some empirical implications and directions for future research.

Notice that the population distribution of suburbs of a metropolitan area can be viewed as more or less uniformly distributed, especially for some US cities with large degrees of urban sprawl. Thus, the employment/retail centers in a metropolitan area are analogues to the cities in a wide geographic space. The commuting cost being infinity is no longer sensible in this interpretation. Suppose, however, that the commuting cost is zero within a metropolitan area, we can simply define the size of an employment/retail center as the employment/total quantity sold at the center. Hence, all the analytical results in this paper apply.

Therefore, two empirical questions arising from this interpretation are whether there are central place hierarchies of economic activities within a metropolitan area, and whether there are corresponding Zipf’s laws and the NAS rule for the employment/retail centers. In particular, retailing activities provide a vivid image in terms of central place patterns. See Berry (1967). For example, gas stations are much more widespread than shopping malls.

References

Moreover, this theorizing of spatial distribution of economic activities within a metropolitan area is an interesting contrast to the theory of Lucas and Rossi-Hansberg (2002), who model the inner structure of a city as zones of residential and business uses.

