Note: Model structure of the CGE model for Jordan

June 27, 2001

Nobuhiro Hosoe

nhosoe@grips.ac.jp

I owe the nested-CES/CET structure of the CGE model for Jordan employed by Hosoe (1998) to Devarajan et al. (1990)\(^1\). But some modifications are made to equip their original model with the international trade model with three regions. Some parts of the model may be a little bit complicated due to the unique structure of the GTAP version 4 database, particularly in the treatment of international transportation services.

The Armington structure between domestic and imported Goods:

The CES aggregation function:

\(^*\) Nobuhiro Hosoe

National Graduate Institute for Policy Studies (GRIPS)

2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8677

Japan

Demand functions derived from the CES function:

\[Q_{j,r} = \lambda_1 \left(\lambda_2 QD_{j,r} \frac{\sigma_{d,j-1}}{\sigma_{d_j}} + (1 - \lambda_2) QD_{j,r} \frac{\sigma_{d,j-1}}{\sigma_{d_j}} \right)^{\frac{\sigma_d}{\sigma_{d,j-1}}}, \quad \forall j, r \]

The Armington structure between import sources:

CES aggregation function:

\[QM_{j,r} = \omega_1 \left(\sum_i \omega_2 QM_{j,s,r} \frac{\omega_{m,j-1}}{\omega_{m,j}} \right)^{\frac{\omega_{m,j}}{\omega_{m,j-1}}}, \quad \forall j, r \]

\[QT_{j,s,r} = \left(\frac{\omega_1 \omega_{m,j-1}}{\omega_{m,j}} \omega_2 \frac{pqm_{j,r}}{(1 + \tau_{j,s,r}) pqt_{j,r} \cdot \text{Exch}_{j,r} + \tau_{j,s,r} pqq \cdot \text{Exch}_{ROW,j}} \right)^{\frac{\omega_{m,j}}{\omega_{m,j-1}}} QM_{j,r}, \quad \forall j, s, r \]

\[Z_{j,r} = \delta_1_{j,r} \left(\delta_2_{j,r} QD_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} + (1-\delta_2_{j,r}) QE_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} \right) + QTS_{r}, \quad i = SRV, \forall r \]

\[= \delta_1_{j,r} \left(\delta_2_{j,r} QD_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} + (1-\delta_2_{j,r}) QE_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} \right), \quad i \neq SRV, \forall r \]

Supply functions derived from the CET function:

\[QD_{j,r} = \left(\frac{\delta_1_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} \delta_2_{j,r} (1+\tau_{j,r}) p_{z_{j,r}}}{p q d_{j,r}} \right) (Z_{j,r} - QTS_{r}), \quad i = SRV, \forall r \]

\[= \left(\frac{\delta_1_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} \delta_2_{j,r} (1+\tau_{j,r}) p_{z_{j,r}}}{p q d_{j,r}} \right) Z_{j,r}, \quad i \neq SRV, \forall r \]

\[QE_{j,r} = \left(\frac{\delta_1_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} (1-\delta_2_{j,r})(1+\tau_{j,r}) p_{z_{j,r}}}{p q e_{j,r}} \right) (Z_{j,r} - QTS_{r}), \quad i = SRV, \forall r \]

\[= \left(\frac{\delta_1_{j,r} \frac{1+\alpha_{j}}{\alpha_{j}} (1-\delta_2_{j,r})(1+\tau_{j,r}) p_{z_{j,r}}}{p q e_{j,r}} \right) Z_{j,r}, \quad i \neq SRV, \forall r \]

The CGE transformation structure between export destinations:

\[QE_{j,r} = \gamma_{1_{j,r}} \left(\sum_s \gamma_{2_{j,s,r}} QT_{j,s,r} \frac{1+\psi_{j}}{\psi_{j}} \right) \frac{\psi_{j}}{1+\psi_{j}}, \quad \forall j, r \]

\[QT_{j,s,r} = \left(\frac{\gamma_{1_{j,r}} \frac{1+\psi_{j}}{\psi_{j}} \gamma_{2_{j,s,r}} p q e_{j,r}}{p q t_{j,r}} \right) QE_{j,r}, \quad \forall j, s, r \]

The CES value-added aggregation function and the derived factor demand functions:

\[Y_{j,r} = \beta_{1_{j,r}} \left(\sum_h \beta_{2_{j,h,r}} F_{h,j,r} \frac{\gamma_{j}^{-1}}{\gamma_{j}} \right) \frac{\gamma_{j}}{1-\gamma_{j}}, \quad \forall j, r \]
\[
F_{h,j,r} = \left(\frac{\beta_1 j, i, \eta_j - 1}{\eta_j} \beta_2 j, i, p_y j, r \right) \left(\frac{p_{f_{h,r}}}{Y_{j,r}} \right), \quad \forall h, j, r
\]

The intermediate goods demand functions and the zero-profit conditions derived from the Leontief function:

\[X_{i,j,r} = ax_{i,j,r} Z_{i,j,r}, \quad \forall i, j, r\]
\[Y_{j,r} = ay_{j,r} Z_{j,r}, \quad \forall j, r\]
\[p_{z_{j,r}} = \sum_{i} ax_{i,j,r} (1 + \tau_{i,j,r}) pq_{i,r} + ay_{j,r} p_y j, r, \quad \forall j, r\]

The final demand functions:

Household:
\[(1 + \tau_{j,HOR,r}) pq_{j,r} QC_{j,HOR,r} = \alpha_{j,r} \left(\sum_{h} p_{f_{h,r}} FF_{h,r} + \sum_{i,s} T_{m_{i,s,r}} + \sum_{i,s} T e_{i,s}, r \right)
+ \sum_{i} T z_{i,r} + \sum_{i,j} T x_{i,j,r} + \sum_{i,l} T c_{i,l,r} + Exch_{ROW,r} CAB_r
- \sum_{i,l} (1 + \tau_{i,l,2,r}) pq_{i,r} QC_{i,l,2,r}, \quad \forall j, r\]

Government and investment:
\[QC_{i,l,2,r} = QC_{i,l,2,r}^0, \quad \forall i, l, 2, r\]

Taxes and freight:

Import tariffs:
\[T m_{i,r,s} = \eta_{m_{i,r,s}} \left(\left(1 + \tau_{i,r,s} \right) pq t_{i,r,s} Exch_{i,s} + \tau_{i,r,s} pq q t \cdot Exch_{ROM,s} QT_{i,r,s} \right), \quad \forall i, r, s\]

Export taxes:
\[T e_{j,r,s} = \tau_{e_{j,r,s}} pq t_{j,r,s} QT_{j,r,s}, \quad \forall j, r, s\]
Indirect taxes on intermediate uses:

\[T_{x_{i,j,r}} = \tau_{i,j,r} p_{q_{i,j,r}} X_{i,j,r}, \forall i, j, r \]

Indirect taxes on final demand:

\[T_{c_{i,l,r}} = \tau_{i,l,r} p_{q_{i,l,r}} Q_{c_{i,l,r}}, \forall i, l, r \]

The BOP constraint:

\[
\sum_{i,r} (1 + \tau_{i,z,r}) Exch_{s,ROW} p_{q_{i,z,r}} QT_{i,z,r} + CAB_s + (1 + \tau_{SRV,s}) Exch_{s,ROW} p_{z_{SRV,s}} QTS_s = \sum_{i,r} (\tau_{i,z,r} p_{q_{i,z,r}} \cdot Exch_{s,ROW} + (1 + \tau_{i,z,r}) Exch_{s,ROW} p_{q_{i,z,r}}) QT_{i,z,s}, \forall s
\]

Market-clearing conditions:

For commodities:

\[Q_{i,r} = \sum_{j} X_{i,j,r} + \sum_{i} Q_{c_{i,l,r}}, \forall i, r \]

For factors:

\[FF_{h,r} = \sum_{j} F_{h,j,r}, \forall h, r \]

The International transportation sector:

Generation of the total international trade service with inputs supplied by each region:

\[QQT = \rho \prod_{r} QTS_{r}^{\phi_{r}} \]

International trade service demand for each region:

\[QTS_{s} = \frac{\phi_{s} p_{qqt}}{(1 + \tau_{SRV,s}) Exch_{s,ROW} p_{z_{SRV,s}}} QQT, \forall s \]

The Market-clearing condition of the international transportation services:
\[QT = \sum_{i,r,s} \tau_{i,r,s} QT_{i,r,s}, \]

The arbitrage condition on foreign exchange:

\[Exch_{i,s} = Exch_{r,r}, Exch_{r,s}. \]

Notations are:

[Indices]

\[i, j, jj: \text{ goods (AGR, ENG, MIN, TXA, LMN, CHM, NMM, MAN, SRV)}, \]

\[s, r, rr: \text{ regions (JOR, E_U, ROW)}, \]

\[h: \text{ factors (LND, LAB, CAP)}, \]

\[l: \text{ agents (HOH, GOV, INV)}, \]

\[l2: \text{ the subset of } l \text{ (GOV, INV).} \]

[Endogenous variables]

\[Tm_{i,r,s}: \text{ the amount of import tariffs on the } i\text{-th good imports from the } r\text{-th region to the } s\text{-th region,} \]

\[Te_{i,r,s}: \text{ the amount of export taxes on the } i\text{-th good exports from the } r\text{-th region to the } s\text{-th region,} \]

\[Tz_{j,r}: \text{ the amount of indirect taxes on the } j\text{-th good domestic production in the } r\text{-th} \]
region,

\(T_{x_{i,j,r}} \): the amount of indirect taxes on intermediate uses of the \(i \)-th good by the \(j \)-th sector in the \(r \)-th region,

\(T_{c_{i,l,r}} \): the amount of indirect taxes on final uses of the \(i \)-th good by the \(l \)-th final users in the \(r \)-th region,

\(QT_{i,r,s} \): transportation of the \(i \)-th good from the \(r \)-th region to the \(s \)-th region (including that from the \(r \)-th region to itself),

\(QM_{j,r} \): composite imports of the \(j \)-th good in the \(r \)-th region,

\(QE_{j,r} \): composite exports of the \(j \)-th good in the \(r \)-th region,

\(QD_{j,r} \): the \(j \)-th domestic good in the \(r \)-th region,

\(Q_{i,r} \): the \(i \)-th Armington's composite good in the \(r \)-th region,

\(Z_{j,r} \): domestic output of the \(j \)-th good in the \(r \)-th region,

\(F_{h,j,r} \): uses of the \(h \)-th factor by the \(j \)-th sector in the \(r \)-th region,

\(Y_{j,r} \): uses of composite factor (i.e., value added) by the \(j \)-th sector in the \(r \)-th region,

\(X_{i,j,r} \): uses of the \(i \)-th intermediate inputs by the \(j \)-th sector in the \(r \)-th region,

\(QC_{i,l,r} \): final demand of the \(i \)-th good by the \(l \)-th agent in the \(r \)-th region,

\(QTS_{r} \): exports of international transportation services by the \(r \)-th region,

\(QQT \): aggregate international transportation services,
\[\text{Note 1: which is common among sectors due to mobility of factors across sectors,}\]

\[\text{Note 2: } pf_{LAB,i} \text{ are set at unity as a numéraire,}\]

\[\text{Exch}_{r,s}: \text{exchange rate which convert the } r\text{-th region's currency to that of the } s\text{-th region.}\]

[Exogenous variables and key parameters]

\[\tau_{i,r,s}: \text{the import tariff rate for the } i\text{-th good imports from the } r\text{-th region to the } s\text{-th region,}\]

\[\tau_{e,i,r,s}: \text{the export tax rate for the } i\text{-th good exports from the } r\text{-th region to the } s\text{-th region,}\]

\[\tau_{j,r}: \text{the indirect tax rate for the } j\text{-th good domestic production in the } r\text{-th region,}\]
\(\tau_{i,j,r} \): the indirect tax rate for uses of the \(i \)-th good by the \(j \)-th sector in the \(r \)-th region,

\(\tau_{i,l,r} \): the indirect tax rate for uses of the \(i \)-th good by the \(l \)-th final users in the \(r \)-th region,

\(\tau_{i,r,s} \): coefficients of international transportation service requirement of the \(i \)-th good shipped from the \(r \)-th region to the \(s \)-th region,

\(CAB_r \): the current account balance in the \(r \)-th region,

\(QC_{i,i,r}^0 \): the initial value of \(QC_{i,i,r} \)

\(FF_{h,r} \): the \(h \)-th factor endowment in the \(r \)-th region,

\(\sigma_v \): elasticity of substitution among factors,

\(\sigma_d \): elasticity of substitution/transformation between composite imports/exports and domestic goods,

\(\sigma_m \): elasticity of substitution/transformation among import sources/export destinations,

and the other Greek letters are coefficients.
<table>
<thead>
<tr>
<th></th>
<th>sigma-d</th>
<th>sigma-m</th>
<th>sigma-v</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR</td>
<td>2.2</td>
<td>4.4</td>
<td>0.56</td>
</tr>
<tr>
<td>ENG</td>
<td>2.8</td>
<td>5.6</td>
<td>1.12</td>
</tr>
<tr>
<td>MIN</td>
<td>2.8</td>
<td>5.6</td>
<td>1.12</td>
</tr>
<tr>
<td>TXA</td>
<td>3.3</td>
<td>6.6</td>
<td>1.26</td>
</tr>
<tr>
<td>LMN</td>
<td>2.2</td>
<td>4.4</td>
<td>1.12</td>
</tr>
<tr>
<td>CHM</td>
<td>1.9</td>
<td>3.8</td>
<td>1.26</td>
</tr>
<tr>
<td>NMM</td>
<td>2.8</td>
<td>5.6</td>
<td>1.26</td>
</tr>
<tr>
<td>MAN</td>
<td>2.8</td>
<td>5.6</td>
<td>1.26</td>
</tr>
<tr>
<td>SRV</td>
<td>1.9</td>
<td>3.8</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Source: compiled from GTAP version 3.
Figure: The flowchart of commodities
(for the case of Jordan)

Note: "Utility", at the top of the figure, represents utility of the household in each region.