Endogenous Variables

Consider a population model:

\[y_{it} = \alpha_i y_{it} + \beta_0 + \beta_1 x_{it} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + u_i \]

We call \(y_2 \) an endogenous variable when \(y_2 \) is correlated with \(u \). As we have studied earlier, \(y_2 \) would be correlated with \(u \) if (a) there are omitted variables that are correlated with \(y_2 \) and \(y_1 \), (b) \(y_2 \) is measured with errors, and (c) \(y_1 \) and \(y_2 \) are simultaneously determined (we will cover this issue later). All of these problems, we can identify the source of the problems as the correlation between the error term and one or some of the independent variables.

For all of these problems, we can apply instrumental variables (IV) estimations because instrumental variables are used to cut correlations between the error term and independent variables. To conduct IV estimations, we need to have instrumental variables (or instruments in short) that are (R1) uncorrelated with \(u \) but (R2) partially and sufficiently strongly correlated with \(y_2 \) once the other independent variables are controlled for.

It turns out that it is very difficult to find proper instruments!

In practice, we can test the second requirement (b), but we can not test the first requirement (a) because \(u \) is unobservable. To test the second requirement (b), we need to express a reduced form equation of \(y_2 \) with all of exogenous variables. Exogenous variables include all of independent variables that are not correlated with the error term and the instrumental variable, \(z \). The reduced form equation for \(y_2 \) is

\[y_2 = \delta_z z + \delta_1 + \delta_2 x_2 + \ldots + \delta_{k-1} x_{k-1} + u \]
For the instrumental variable to satisfy the second requirement (R2), the estimated coefficient of z must be significant.

In this case, we have one endogenous variable and one instrumental variable. When we have the same number of endogenous and instrumental variables, we say the endogenous variables are just identified. When we have more instrumental variables than endogenous variables, we say the endogenous variables are over-identified. In this case, we need to use “two stage least squares” (2SLS) estimation. We will come back to 2SLS later.

Define $x = (y_2, 1, x_2, \ldots, x_{k-1})$ as a 1-by-k vector, $z = (z, 1, x_2, \ldots, x_{k-1})$ a 1-by-k vector of all exogenous variables, X as a n-by-k matrix that includes one endogenous variable and $k-1$ independent variables, and Z as a n-by-k matrix that include one instrumental variable and $(k-1)$ independent variables:

$$X = \begin{bmatrix} y_{12} & 1 & x_{12} & x_{13} & x_{1k-1} \\ y_{22} & 1 & x_{22} & x_{23} & x_{2k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{n2} & 1 & x_{n2} & x_{n3} & x_{nk-1} \end{bmatrix}, \quad Z = \begin{bmatrix} z_1 & 1 & x_{12} & x_{13} & x_{1k-1} \\ z_2 & 1 & x_{22} & x_{23} & x_{2k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ z_n & 1 & x_{n2} & x_{n3} & x_{nk-1} \end{bmatrix}.$$

The instrumental variables (IV) estimator is

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'Y$$

Notice that we can take the inverse of $Z'X$ because both Z and X are n-by-k matrices and $Z'X$ is a k-by-k matrix which has full rank, k. This indicates that there is no perfect collinearity in Z. The condition that $Z'X$ has full rank of k is called the rank condition.

Problems with Small property.

The consistency of the IV estimators can be shown by using the two requirements for IVs:

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'(X\beta + u)$$
\[
\begin{align*}
&= \beta + (Z'X)^{-1} Z' u \\
&= \beta + (Z'X/n)^{-1} Z' u / n
\end{align*}
\]

From the first requirement (R1), \(p \lim Z' u / n \to 0 \).

From the second requirement (R2), \(p \lim Z'X / n \to A \), where \(A \equiv E(z'x) \).

Therefore, the IV estimator is consistent when IVs satisfy the two requirements.

A Bivariate IV model

Let’s consider a simple bivariate model:

\[
y_1 = \beta_0 + \beta_1 y_2 + u
\]

We suspect that \(y_2 \) is an endogenous variable, \(\text{cov}(y_2, u) \neq 0 \). Now, consider a variable, \(z \), which is correlated \(y_2 \) but not correlated with \(u \): \(\text{cov}(z, y_2) \neq 0 \) but \(\text{cov}(z, u) = 0 \).

Consider \(\text{cov}(z, y_1) \):

\[
\text{cov}(z, y_1) = \text{cov}(z, \beta_0 + \beta_1 y_2 + u) = \beta_0 \text{cov}(z, 1) + \beta_1 \text{cov}(z, y_2) + \text{cov}(z, u)
\]

Because \(\text{cov}(z, 1) = 0 \) and \(\text{cov}(z, u) = 0 \), we find that

\[
\beta_1 = \frac{\text{cov}(z, y_1)}{\text{cov}(z, y_2)} = \frac{\sum_{i=1}^{n} (z_i - \bar{z})(y_{i1} - \bar{y}_1)}{\sum_{i=1}^{n} (z_i - \bar{z})(y_{i2} - \bar{y}_2)}, \text{ which is}
\]

\[
= (Z'X)^{-1} Z' Y.
\]

Thus, we find the same conclusion as using the matrix form.

The problem in practice is the first requirement, \(\text{cov}(z, u) = 0 \). We can not empirically confirm this requirement because \(u \) cannot be observed. Thus, the validity of this assumption is left to economic theory or economists’ common sense.

Recent studies show that even the first requirement can be problematic when the correlation between the endogenous and instrumental variables is weak. We will discuss this later.

A dummy variable grew up near a 4 year collage as an IV on educ.

OLS

```
. reg lwage educ

Source |      SS       df       MS                      Number of obs =    3010
---------+------------------------------               F(  1,  3008) =  329.54
Model |  58.5153536     1  58.5153536               Prob > F      =  0.0000
Residual |  534.126258  3008   .17756857               R-squared     =  0.0987
---------+------------------------------               Adj R-squared =  0.0984
Total |  592.641611  3009  .196956335               Root MSE      =  .42139

------------------------------------------------------------------------------
  lwage |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
   educ |   .0520942   .0028697     18.153   0.000       .0464674     .057721
     _cons |   5.570883   .0388295    143.470   0.000       5.494748    5.647017

------------------------------------------------------------------------------

Correlation between nearc4 (an IV) and educ

. reg educ nearc4

Source |      SS       df       MS                      Number of obs =    3010
---------+------------------------------               F(  1,  3008) =   63.91
Model |  448.604204     1  448.604204               Prob > F      =  0.0000
Residual |  21113.4759  3008  7.01910767               R-squared     =  0.0208
---------+------------------------------               Adj R-squared =  0.0205
Total |  21562.0801  3009  7.16586243               Root MSE      =  2.6494

------------------------------------------------------------------------------
  educ |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  nearc4 |    .829019   .1036988      7.994   0.000       .6256913    1.032347

------------------------------------------------------------------------------
```
Thus, nearc4 satisfies the one of the two requirements to be a good candidate as an IV.

IV Estimation:

```
.ivreg lwage (educ=nearc4)
```

Instrumental variables (2SLS) regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-340.111443</td>
<td>1</td>
<td>-340.111443</td>
<td>F(1, 3008) = 51.17</td>
</tr>
<tr>
<td>Residual</td>
<td>932.753054</td>
<td>3008</td>
<td>.310090776</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>592.641611</td>
<td>3009</td>
<td>.196956335</td>
<td>R-squared = .</td>
</tr>
</tbody>
</table>

Adj R-squared = .

Root MSE = .55686

| lwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|-------|---------------------|
| educ | .1880626 | .0262913 | 7.153 | 0.000 | .1365118 - .2396134 |
| _cons | 3.767472 | .3488617 | 10.799 | 0.000 | 3.08344 - 4.451504 |

Instrumented: educ
Instruments: nearc4

Note that you can obtain the same coefficient by estimating OLS on lwage with the predicted educ (predicted by nearc4). However, the standard error would be incorrect. In the above IV Estimation, the standard error is already corrected.

End of Example 1
The Two-Stage Least Squares Estimation

Again, let’s consider a population model:

\[y_1 = \alpha_1 y_2 + \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u \]

where \(y_2 \) is an endogenous variable. Suppose that there are \(m \) instrumental variables. Instruments, \(z = (1, x_1, \ldots, x_k, z_1, \ldots, z_m) \), are correlated with \(y_2 \). From the reduced form equation of \(y_2 \) with all exogenous variables (exogenous independent variables plus instruments), we have

\[y_2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \delta_{k+1} z_1 + \ldots + \delta_{k+m} z_m + \varepsilon \]

\[y_2 = \hat{y}_2 + \varepsilon \]

\(\hat{y}_2 \) is a linear projection of \(y_2 \) with all exogenous variables. Because \(\hat{y}_2 \) is projected with all exogenous variables that are not correlated with the error term, \(u \), in (1), \(\hat{y}_2 \) is not correlated with \(u \), while \(\varepsilon \) is correlated with \(u \). Thus, we can say that by estimating \(y_2 \) with all exogenous variables, we have divided into two parts: one is correlated with \(u \) and the other is not.

The projection of \(y_2 \) with \(Z \) can be written as

\[\hat{y}_2 = Z\hat{\delta} = Z(Z'Z)^{-1}Zy_2 \]

When we use the two-step procedure (as we discuss later), we use this \(\hat{y}_2 \) in the place of \(y_2 \). But now, we treat \(y_2 \) as a variable in \(X \) and project \(X \) itself with \(Z \):

\[\hat{X} = Z\hat{\Pi} = Z(Z'Z)^{-1}Z'X = P_2 X \]

\(\hat{\Pi} \) is a \((k+m-1)\)-by-\(k \) matrix with coefficients, which should look like:
Thus, \(y_2 \) in \(X \) should be expressed as a linear projection, and other independent variables in \(X \) should be expressed by itself. \(P_Z = Z(Z'Z)^{-1}Z' \) is a \(n \)-by-\(n \) symmetric matrix and idempotent (i.e., \(P_Z'P_Z = P_Z \)). We use \(\hat{X} \) as instruments for \(X \) and apply the IV estimation as in

\[
\hat{\beta}_{2SLS} = (\hat{X}X)^{-1}\hat{X}Y \\
= (X'P_Z X)^{-1} X'P_Z Y \\
= (X'Z(Z'Z)^{-1}Z'X)(Z'Z)^{-1} Z'Y
\]

(2)

This can be also written as

\[
\hat{\beta}_{2SLS} = (\hat{X} \hat{X})^{-1}\hat{X}Y
\]

This is the 2SLS estimator. It is called as two-stage because it looks like we take two steps by creating projected \(X \) to estimate the 2SLS estimators. We do not need to take two steps as we show in (2). We can just estimate 2SLS estimators in one step by using \(X \) and \(Z \). (This is what econometrics packages do.)

The Two-Step procedure
It is still a good idea to know how to estimate the 2SLS estimators by a two-step procedure:

Step 1: Obtain \(\hat{y}_2 \) by estimating an OLS against all of exogenous variables, including all of instruments (the first-stage regression)
Step 2: Use \(\hat{y}_2 \) in the place of \(y_2 \) to estimate \(y_1 \) against \(\hat{y}_2 \) and all of exogenous independent variables, not instruments (the second stage regression)
The estimated coefficients from the two-step procedure should exactly the same as 2SLS. However, you must be aware that the standard errors from the two-step procedure are incorrect, usually smaller than the correct ones. Thus, in practice,

avoid using predicted variables as much as you can!

Econometric packages will provide you 2SLS results based on (2). So you do not need to use the two-step procedure.

We use the first step procedure to test the second requirement for IVs. In the first stage regression, we should conduct a F-test on all instruments to see if instruments are jointly significant in the endogenous variable, y_2. As we discuss later, instruments should be strongly correlated with y_2 to have reliable 2SLS estimators.

Consistency of 2SLS

Assumption 2SLS.1: For vector z, $E(z'u)=0$,

where $z = (1, x_1, \ldots, x_k, z_1, \ldots, z_m)$.

Assumption 2SLS.2: (a) rank $E(z'z) = k+m+1$; (b) rank $E(z'x) = k$.

(b) is the rank condition for identification that z is sufficiently linearly related to x so that rank $E(z'x)$ has full column rank.

The order condition is $k-1+m \geq k-1+h$, where h is the number of endogenous variable. Thus, the order condition indicates that we must have at least as many instruments as endogenous variables.

Under assumption 2SLS1 and 2SLS2, the 2SLS estimators in (10-5) are consistent.

Under homoskedasticity,

$$\hat{\sigma}^2 (X'X)^{-1} = (n-k)^{-1} \sum_{i=1}^{n} \hat{u}_i (X'X)^{-1}$$
is a valid estimator of the asymptotic variance of $\hat{\beta}_{2SLS}$.

Under heteroskedasticity, the heteroskedasticity-robust (White) standard errors is

$$(\hat{X}'\hat{X})^{-1}\hat{X}\hat{\Sigma}\hat{X}'(\hat{X}'\hat{X})^{-1}$$

Here are some tests for IV estimation. See Wooldridge (Introductory Econometrics) for details.

Testing for Endogeneity

(i) Estimate the reduced form model using the endogenous variable as the dependent variable:

$$y_2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \delta_{k+1} z_1 + \ldots + \delta_{k+m} z_m + \epsilon$$

(ii) Obtain the residual, $\hat{\epsilon}$.

(iii) Estimate

$$y_1 = \alpha_1 y_2 + \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \delta \hat{\epsilon} + u$$

(iv) If $\hat{\delta}$ is significant, then y_2 is endogenous.

Testing the Over-Identification

(i) Estimate $\hat{\beta}_{2SLS}$ and obtain \hat{u}.

(ii) Regress \hat{u} on z and x.

(iii) Get R^2 and get nR^2, which is chi-squared. If this is significantly different from zero, then at least some of the IVs are not exogenous.

OLS

```
.reg lwage educ exper expersq black smsa south
```
2SLS Estimation: nearc2 nearc4 as IVs

```
. ivreg lwage (educ= nearc2 nearc4) exper expersq black smsa south
```

Instrumental variables (2SLS) regression
| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------|-------------|-----------|-------|------|----------------------|
| educ | 0.100713 | 0.01262 | 7.923 | 0.000| 0.0753034 to 0.1248392|
| exper | 0.0989441 | 0.00948 | 10.435| 0.000| 0.0803496 to 0.1175385|
| expersq | -0.002449 | 0.0004013 | -6.103| 0.000| -0.0032359 to -0.0016621|
| black | -0.1504635 | 0.0259113 | -5.807| 0.000| -0.2012765 to -0.0996505|
| smsa | 0.150854 | 0.0195975 | 7.698 | 0.000| 0.1124226 to 0.1892854|
| south | -0.1072406 | 0.0180661 | -5.936| 0.000| -0.1426688 to -0.0718123|
| _cons | 4.26178 | 0.216812 | 19.657| 0.000| 3.836604 to 4.686956 |

Instrumented: educ
Instruments: nearc2 nearc4 fatheduc motheduc + exper expersq ... south
2SLS Estimation: fatheduc motheduc as IVs

. ivreg lwage (educ= fatheduc motheduc) exper expersq black smsa south

Instrumental variables (2SLS) regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 2220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>108.477154</td>
<td>6</td>
<td>18.0795257</td>
<td>F(6, 2213) = 83.44</td>
</tr>
<tr>
<td>Residual</td>
<td>320.52233</td>
<td>2213</td>
<td>.144836118</td>
<td>Prob > F = 0.0000, R-squared = 0.2529</td>
</tr>
<tr>
<td>Total</td>
<td>428.999484</td>
<td>2219</td>
<td>.193330097</td>
<td>Adj R-squared = 0.2508</td>
</tr>
</tbody>
</table>

--
| lwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|------|----------------------------|
| educ | .099931 | .012756 | 7.834 | 0.000 | .0749161 -.124946 |
| exper | .098884 | .0095123 | 10.395 | 0.000 | .0802299 .117538 |
| expersq | -.0024487 | .0004012 | -6.103 | 0.000 | -.0032356 -.0016619 |
| black | -.1505902 | .0259598 | -5.801 | 0.000 | -.2014983 -.0996822 |
| smsa | .1509271 | .0196181 | 7.693 | 0.000 | .1124553 .1893988 |
| south | -.1072797 | .0180714 | -5.936 | 0.000 | -.1427183 -.071841 |
| _cons | 4.26415 | .2189075 | 19.479 | 0.000 | 3.834865 4.693436 |

--

Instrumented: educ

Instruments: fatheduc motheduc + exper expersq ... south

Which ones are better?

End of Example 2
Lecture 8A: Weak Instruments

Remember the two requirements for instrumental variables to be valid: (R1) uncorrelated with u but (R2) partially and sufficiently strongly correlated with y_2 once the other independent variables are controlled for.

The first requirement is difficult to be confirmed because we cannot observe u. So, we rely on economic theory or natural experiments to find instrumental variables that satisfy the first requirement. The second requirement can be checked by conducting some analyses.

One way of checking the second requirement is to estimate a regression model of endogenous variables on exogenous variables which include instrumental variables and other exogenous variables. Suppose that we have one endogenous variable, y_2, and m instrumental variables, z_1, \ldots, z_m. Then estimate the following model:

$$y_{i2} = \beta_0 + \delta_1 z_{i1} + \ldots + \delta_m z_{im} + \beta_1 x_{i1} + \ldots + \beta \delta x_{i2} + u_i. \quad (1)$$

Then obtain a F-statistics on the estimators of the instrumental variables:

$$H_0 : \delta_1 = \ldots = \delta_m = 0. \text{ If the F-statistics is small, then we call the instrumental variables weak. When the instrumental variables are weak, the IV or 2SLS estimators could be inconsistent or have large standard errors.}$$

Inconsistency

To examine how weak instruments can make IV and 2SLS estimators inconsistent, let us consider a simple bivariate model:

$$y_1 = \beta_0 + \beta_1 y_2 + u$$

In a bivariate model, we write

$$\text{plim } \hat{\beta}_{IV} = \beta + \frac{\text{cov}(z,u)}{\text{cov}(z,y_2)}$$

because $\text{Corr}(z,u) = \text{cov}(z,u)/[\text{sd}(z)\text{sd}(u)]$ (see Wooldridge pp714)
\[
\begin{align*}
\text{plim} \quad \hat{\beta}_w &= \beta + \frac{\text{corr}(z, u)(sd(z)sd(u))}{\text{corr}(z, y_2)(sd(z)sd(y_2))} \\
\text{plim} \quad \hat{\beta}_w &= \beta + \frac{\text{corr}(z, u) \cdot sd(u)}{\text{corr}(z, y_2) \cdot sd(y_2)}
\end{align*}
\]

Thus if \(z \) is only weakly correlated with the endogenous variable, \(y_2 \), i.e., \(\text{corr}(z, y_2) \) is very small, the IV estimator could be severely biased even when the correlation between \(z \) and \(u \) is very small.

Consider now the OLS estimator of the bivariate model ignoring the endogeneity of \(y_2 \):
\[
\begin{align*}
\text{plim} \quad \hat{\beta}_{\text{OLS}} &= \beta + \frac{\text{cov}(y_2, u)}{\text{var}(y_2)} \\
&= \beta + \frac{\text{corr}(y_2, u)sd(y_2)sd(u)}{sd(y_2)^2} \\
&= \beta + \frac{\text{corr}(y_2, u)sd(u)}{sd(y_2)}
\end{align*}
\]

Here we have the endogenous bias. But the size of the endogenous bias could be smaller than the bias created by the weak instrument. To compare these two, let us take the ratio of these two:
\[
\frac{p\lim \hat{\beta}_w - \beta}{p\lim \hat{\beta}_{\text{OLS}} - \beta} = \frac{\text{corr}(z, u)}{\text{corr}(z, y_2)} \cdot \frac{1}{\text{corr}(y_2, u)}.
\]

When this ratio is larger than 1, the bias in the IV estimator is larger than the OLS estimator. When the instrumental variable is completely uncorrelated with \(u \), the bias in the IV estimator is zero. When it has even a very small correlation with \(u \), the size of the ratio depends on the size of the denominator, which could be very small when the correlation between the instrumental variable and the endogenous variable, \(\text{corr}(z, y_2) \), is small. The implication from this simple model could be also applied on a more complicated model where there are more than one endogenous variable and one instrumental variable.

Low Precision

Weak instrumental variables can lead to large standard errors of the IV/2SLS estimators. The variance of the IV estimator is
\[V(\hat{\beta}_{IV}) = \sigma^2 (Z'X)^{-1} Z'Z(Z'X)^{-1}. \]

This could be rearranged as:

\[V(\hat{\beta}_{IV}) = \sigma^2 (XX')^{-1} XX' (Z'X)^{-1} Z'Z(Z'X)^{-1} \]

\[= V(\hat{\beta}_{OLS}) XX' (Z'X)^{-1} Z'Z(Z'X)^{-1} \]

\[= V(\hat{\beta}_{OLS}) [(XX')^{-1} Z'X]^{-1} [(Z'Z)^{-1} Z'X]^{-1} \]

\[= V(\hat{\beta}_{OLS}) [\hat{\Pi}_{z,x}]^{-1} [\hat{\Pi}_{x,z}]^{-1} \]

where \(\hat{\Pi}_{z,x} \) and \(\hat{\Pi}_{x,z} \) are projections of \(Z \) on \(X \) and \(X \) on \(Z \), respectively. If the correlations between \(Z \) and \(X \) are low, then \(\hat{\Pi}_{z,x} \) and \(\hat{\Pi}_{x,z} \) have low values, which would make the variance of the IV estimators large. This could be applied on the 2SLS estimators.

In empirical estimation, we often find large standard errors in the IV/2SLS estimators. This could be caused by weak instruments.

Thus, weak instrumental variables can cause inconsistency and imprecision in the IV/2SLS estimators. But how weak is weak?

A Rule of Thumb to find Weak Instruments

Staiger and Stock (1997) suggest that the F-statistics of instrumental variables in (1), of this lecture note, should be larger than 10 to ensure that the maximum bias in IV estimators to be less than 10%. If you are willing to accept the maximum bias in IV estimators to be less than 20%, the threshold is F-stat being larger than 5. If the number of instrumental variables is one, the F-statistics should be replaced by the t-statistics.

In practice, it is quite difficult to find valid instrumental variables that are not weak. I personally find searching for instrumental variables time-consuming and not so rewarding. One can never be sure about validness of IVs. You should look for natural experiments or randomized experiments that could be used as instrumental variables.
Lecture 9: Heteroskedasticity and Robust Estimators

In this lecture, we study heteroskedasticity and how to deal with it. Remember that we did not need the assumption of Homoskedasticity to show that OLS estimators are unbiased under the finite sample properties and consistency under the asymptotic properties. What matters is how to correct OLS standard errors.

Heteroskedasticity

In this section, we consider heteroskedasticity, while maintaining the assumption of no-autocorrelation. The variance of disturbance i, u_i, is not constant across observations but not correlated with u_j:

$$E(uu')=\begin{bmatrix} E(u_1u_1) & E(u_1u_2) & E(u_1u_n) \\ E(u_2u_1) & E(u_2u_2) & E(u_2u_n) \\ E(u_nu_1) & E(u_nu_2) & E(u_nu_n) \end{bmatrix}=\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_n^2 \end{bmatrix}=\Sigma$$

or

$$E(uu')=\sigma^2 \begin{bmatrix} \sigma_1^2 / \sigma^2 & 0 & 0 \\ 0 & \sigma_2^2 / \sigma^2 & 0 \\ 0 & 0 & \sigma_n^2 / \sigma^2 \end{bmatrix}=\sigma^2 \Omega$$

Notice that under homoskedasticity, $\Omega=I$.

Under heteroskedasticity, the sample variance of OLS estimator (under finite sample properties) is

$$Var(\hat{\beta}) = Var[\hat{\beta} + (XX)^{-1}X'\epsilon]$$

$$= E[(XX)^{-1}X'\epsilon\epsilon'X(XX)^{-1}]$$
\[(X'X)^{-1}X'uv' X(X'X)^{-1} = \sigma^2(X'X)^{-1}X\Omega X(X'X)^{-1}\] (1)

(See Theorem 10.1 in Greene (2003))

Unless you specify, however, econometric packages automatically assume homoskedasticity and will calculate the sample variance of OLS estimator based on the homoskedasticity assumption:

\[Var(\hat{\beta}) = \sigma^2(X'X)^{-1}\]

Thus, in the presence of heteroskedasticity, the statistical inference based on \(\sigma^2(X'X)^{-1}\) would be biased, and \(t\)-statistics and \(F\)-statistics are inappropriate. Instead, we should use (1) to calculate standard errors and other statistics.

Finite Sample Properties of OLS Estimators

The OLS estimators are unbiased and have the sampling variance specified in (6-1). If \(u\) is normally distributed, then the OLS estimators are also normally distributed:

\[\hat{B} | X \sim N[B, \sigma^2(X'X)^{-1}(X\Omega X)(X'X)^{-1}]\]

Asymptotic Properties of OLS Estimators

If \(p \lim(X'X / n) = Q\) and \(p \lim(X'\Omega X / n)\) are both finite positive definite matrices, then \(Var(\hat{\beta})\) is consistent for \(Var(\beta)\).

Robust Standard Errors

If \(\Sigma\) is known, we can obtain efficient least square estimators and appropriate statistics by using formulas identified above. However, as in many other problems, \(\Sigma\) is unknown. One common way to solve this problem is to estimate \(\Sigma\) empirically: First, estimate an OLS model, second, obtain residuals, and third, estimate \(\Sigma\):
\[\hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_1^2 & 0 & 0 \\ 0 & \hat{\sigma}_2^2 & 0 \\ 0 & 0 & \hat{\sigma}_n^2 \end{bmatrix} \]

(We may multiply this by \(n/(n-k-1) \) as a degree-of-freedom correction. But when the number of observations, \(n \), is large, this adjustment does not make any difference.)

Thus by using the estimated \(\hat{\Sigma} \), we have

\[
X' \hat{\Sigma} X = X' \begin{bmatrix} \hat{\sigma}_1^2 & 0 & 0 \\ 0 & \hat{\sigma}_2^2 & 0 \\ 0 & 0 & \hat{\sigma}_n^2 \end{bmatrix} X.
\]

Therefore, we can estimate the variances of OLS estimators (and standard errors) by using \(\hat{\Sigma} \):

\[
Var(\hat{\beta}) = (XX)^{-1} \Sigma X (XX)^{-1}
\]

Standard errors based on this procedure are called (heteroskedasticity) robust standard errors or White-Huber standard errors. Or it is also known as the sandwich estimator of variance (because of how the calculation formula looks like). This procedure is reliable but entirely empirical. We do not impose any assumptions on the structure of heteroskedasticity.

Sometimes, we may impose assumptions on the structure of the heteroskedasticity. For instance, if we suspect that the variance is homoskedastic within a group but not across groups, then we obtain residuals for all observations and calculate average residuals for each group. Then, we have \(\hat{\Sigma} \) which has a constant \(\hat{\sigma}_j^2 \) for group \(j \). (In STATA, you can specify groups by using \textit{cluster}.)

19
In practice, we usually do not know the structure of heteroskedasticity. Thus, it is safe to use the robust standard errors (especially when you have a large sample size.) Even if there is no heteroskedasticity, the robust standard errors will become just conventional OLS standard errors. Thus, the robust standard errors are appropriate even under homoskedasticity.

A heteroskedasticity-robust t statistic can be obtained by dividing an OLS estimator by its robust standard error (for zero null hypotheses). The usual F-statistic, however, is invalid. Instead, we need to use the heteroskedasticity-robust Wald statistic. Suppose the hypotheses can be written as

\[H_0 : R\beta = r \]

Where \(R \) is a \(q \times (k+1) \) matrix (\(q < (k+1) \)) and \(r \) is a \(q \times 1 \) vector with zeros for this case. Thus,

\[
R = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
= \begin{bmatrix}
I_q : 0_{q \times (k+1-q)} \\
0 \\
\end{bmatrix},
\quad r = \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

The heteroskedasticity-robust Wald statistics for testing the null hypothesis is

\[
W = (R\hat{\beta} - r)'(R\hat{\Sigma}R)^{-1}(R\hat{\beta} - r)
\]

where \(\hat{\Sigma} \) is given in (7-2). The heteroskedasticity-robust Wald statistics is asymptotically distributed chi-squared with \(q \) degree of freedom. The Wald statistics can be turned into an appropriate F-statistics (\(q, q-k-I \)) by dividing it by \(q \).

Tests for Heteroskedasticity

When should we use robust standard errors? My personal answer to this question is "almost always." As you will see in Example 7-1, it is very easy to
estimate robust standard errors with STATA or other packages. Thus, at least I suggest that you estimate robust standard errors and see if there are any significant differences between conventional standard errors and robust standard errors. If results are robust, i.e., when you do not find any significant differences between two sets of standard errors, then you could be confident in your results based on homoskedasticity.

Statistically, you can use following two heteroskedasticity tests to decide if you have to use robust standard errors or not.

The Breusch-Pagan Test for Heteroskedasticity

If the homoskedasticity assumption is true, then the variance of error terms should be constant. We can make this assumption as a null hypothesis:

\[H_0: \text{E}(u|X) = \Phi^2 \]

To test this null hypothesis, we estimate

\[\hat{u}^2 = \delta_0 + \delta_1x_1 + \delta_2x_2 + ... + \delta_kx_k + e \]

Under the null hypothesis, independent variables should not be jointly significant. The F-statistics that test a joint significance of all independent variables is

\[F_{k,n-k-1} = \frac{R^2 / k}{(1-R^2)/(n-k-1)} \]

The LM test statistics is

\[LM = n R^2 \sim \chi^2_k \]

The White Test for Heteroskedasticity
White proposed to add the squares and cross products of all independent variables:

\[u^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_k x_k^2 + \phi_1 x_1 x_2 + \phi_2 x_1 x_3 + \ldots + \phi x_{k-1} x_k + v \]

Because \(\hat{y} \) includes all independent variables, this test is equivalent of conducting the following test:

\[u^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + v \]

We can use F-test or LM-test on H: \(\delta_1 = 0 \) and \(\delta_2 = 0 \).

Example 1: Step-by-Step Estimation for Robust Standard Errors

In the following do-file, I first estimate a wage model:

\[
\text{logWage} = \beta_0 + \beta_{female} + \beta_{educ} + \beta_{exp\,er} + \beta_{exp\,rsq} + u
\]

by using WAGE1.dta. Then, by using residuals from this conventional OLS, I estimate \(\Sigma \) and obtain robust standard errors by step-by-step with matrix. Finally, I verify what I get with robust standard errors provided by STATA. Of course, you do not need to use matrix to obtain robust standard errors. You just need to use STATA command, “robust,” to get robust standard errors (e.g., `reg y x1 x2 x3 x4, robust`). But at least you know how robust standard errors are calculated by STATA.

. *** on WAGE1.dta
. *** This do-file estimates **White-Huber robust standard errors**

. set matsize 800
. clear
. use c:\docs\fasid\econometrics\homework\wage1.dta
.
. * Variable construction
. gen logwage=ln(wage)
. gen expsq=exper*exper
. gen x0=1

* Obtain conventional OLS residuals

. reg logwage female educ exper expsq

Source | SS df MS Number of obs = 526
---------+------------------------------ F(4, 521) = 86.69
Model | 59.2711314 4 14.8177829 Prob > F = 0.0000
Residual | 89.05862 521 .17093785 R-squared = 0.3996
---------+------------------------------ Adj R-squared = 0.3950
Total | 148.329751 525 .28253286 Root MSE = .41345

--
logwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
female | -.3371868 .0363214 -9.283 0.000 -.4085411 -.2658324
educ | .0841361 .0069568 12.094 0.000 .0704692 .0978029
exper | .03891 .0048235 8.067 0.000 .029434 .0483859
expsq | -.000686 .0001074 -6.389 0.000 -.000897 -.0004751
 _cons | .390483 .1022096 3.820 0.000 .1896894 .5912767

--

. predict e, residual
. gen esq=e*e

* Create varaibles with squared residuals

. gen efemale=esq*female
. gen eeduc=esq*educ
. gen eexper=esq*exper
. gen eexpsq=esq*expsq
. gen ex0=esq*x0

* Matrix construction

. mkmat logwage, matrix(y)
. mkmat efemale eeduc eexper eexpsq ex0, matrix(ex)
. * White-Huber robust standard errors
. matrix ixx=syminv(x'*x)
. matrix sigma=ex'*x
. matrix b_robust=(526/(526-5))*ixx*sigma*ixx

. * Here is the White-Huber robust var(b^)

. mat list b_robust

b_robust[5,5]

<table>
<thead>
<tr>
<th></th>
<th>female</th>
<th>educ</th>
<th>exper</th>
<th>expsq</th>
<th>x0</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>.00130927</td>
<td>.00003556</td>
<td>-1.277e-07</td>
<td>1.647e-09</td>
<td>-.00109773</td>
</tr>
<tr>
<td>educ</td>
<td>.00003556</td>
<td>.00005914</td>
<td>-3.028e-06</td>
<td>1.570e-07</td>
<td>-.00077218</td>
</tr>
<tr>
<td>exper</td>
<td>-1.277e-07</td>
<td>-3.028e-06</td>
<td>.00002186</td>
<td>-4.500e-07</td>
<td>-.00010401</td>
</tr>
<tr>
<td>expsq</td>
<td>1.647e-09</td>
<td>1.570e-07</td>
<td>-4.500e-07</td>
<td>1.009e-08</td>
<td>5.805e-07</td>
</tr>
<tr>
<td>x0</td>
<td>-.00109773</td>
<td>-.00077218</td>
<td>-.00010401</td>
<td>5.805e-07</td>
<td>.01179363</td>
</tr>
</tbody>
</table>

. * Take square root of the diagonal elements>> sd.error
. * Thus sd.er. for female is (0.0013)^.5=0.036, educ is
(0.000059)^.5=0.00768, . * and so on.

But, you do not need to go through this calculation yourself. STATA has a command
called “robust.”

. * Verify with STATA version of robust standard errors

. reg logwage female educ exper expsq, robust

Regression with robust standard errors Number of obs = 526
F(4, 521) = 81.97
Prob > F = 0.0000
R-squared = 0.3996
Root MSE = .41345
--
| Robust
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
logwage | -.3371868 .0361838 -9.319 0.000 -.4082709 -.2661026
Example 2: the Breusch-Pagan test

. *** on WAGE1.dta
. *** This do-file conducts the Breusch-Pagan heteroskedasticity test
. set matsize 800
. clear
. use c:\docs\fasid\econometrics\homework\wage1.dta
. * Variable construction
. gen logwage=ln(wage)
. gen expsq=exper*exper

. * Obtain residuals from the level model
. reg wage female educ exper expsq
(Output is omitted)

. predict u, residual
. gen uu=u*u

. * the BP test
. reg uu female educ exper expsq

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 526</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>24632.1712</td>
<td>4</td>
<td>6158.0428</td>
<td>F(4, 521) = 12.79</td>
</tr>
<tr>
<td>Residual</td>
<td>250826.691</td>
<td>521</td>
<td>481.433189</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>275458.863</td>
<td>525</td>
<td>524.683548</td>
<td>R-squared = 0.0894</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.0824</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 21.942</td>
</tr>
</tbody>
</table>

| uu | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------------|----------|-----------|-------|------|----------------------|
| | | | | | |

end of do-file

End of Example 1
The LM test statistics is $526 \times 0.0894 = 47.02$. This is significant at 1 percent level because the critical level is 13.28 for a chi-square distribution of four degree of freedom.

End of Example 2

Example 7-3: the White test

1. *Obtain residuals from the log model*
2. `. reg logwage female educ exper expsq`
3. (Output omitted)
4. `. predict yhat`
5. (option xb assumed; fitted values)
6. `. predict v, residual`
7. `. gen yhatsq=yhat*yhat`
8. `. gen vsq=v*v`
9. `. * the White test`
10. `. reg vsq yhat yhatsq`

```
Source |      SS   df   MS
-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
        |          0   0     .          0   0     .          0   0     .          0   0     .          0   0     .
        |  14.57426 5.26180  2.767  13.28   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
```
\[F(2, 523) = 3.96 \]

<table>
<thead>
<tr>
<th>Model</th>
<th>.605241058 (\times 2) .302620529</th>
<th>Prob > F = 0.0197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>40.003265 (\times 523) .076488078</td>
<td>R-squared = 0.0149</td>
</tr>
<tr>
<td>Total</td>
<td>40.608506 (\times 525) .077349535</td>
<td>Adj R-squared = 0.0111</td>
</tr>
</tbody>
</table>

| vsq | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|---------|-----------|-------|------|----------------------|
| yhat | -.187119 | .2637874 | -0.709 | 0.478 | -.7053321 .331094 |
| yhatsq | .0871914 | .0812258 | 1.073 | 0.284 | -.0723774 .2467603 |
| _cons | .2334829 | .2096599 | 1.114 | 0.266 | -.1783961 .645362 |

. test yhat yhatsq

(1) yhat = 0.0
(2) yhatsq = 0.0

\[F(2, 523) = 3.96 \]
Prob > F = 0.0197

LM stat is 526 x 0.0149 = 7.84, which is significant at 5 percent level but not at 1 percent level.

\textit{End of Example 3}
Lecture 10: GLS, WLS, and FGLS

Generalized Least Square (GLS)

So far, we have been dealing with heteroskedasticity under OLS framework. But if we knew the variance-covariance matrix of the error term, then we can make a heteroskedastic model into a homoskedastic model.

As we defined before
\[E(uu') = \sigma^2 \Omega = \Sigma. \]

Define further that
\[\Omega^{-1} = PP' \]

\(P \) is a “n x n” matrix

Pre-multiply \(P \) on a regression model

\[Py = PX\beta + Pu \]

or

\[\tilde{y} = \tilde{X}\beta + \tilde{u} \]

In this model, the variance of \(\tilde{u} \) is

\[E(\tilde{u}\tilde{u}') = E(Puu'P') = PE(uu')P' = P\sigma^2 \Omega P' = \sigma^2 PP' = \sigma^2 I \]

Note that \(PP' = I \), because define \(PP' = A \), then \(P'\Omega P' = P'A \). By the definition of \(P, \Omega^{-1} \Omega P' = P'A \), thus \(P' = P'A \). Therefore, \(A \) must be \(I \).

Because \(E(\tilde{u}\tilde{u}') = \sigma^2 I \), the model satisfies the assumption of homoskedasticity. Thus, we can estimate the model by the conventional OLS estimation.

Hence,

\[\hat{\beta} = (\tilde{X}'\tilde{X})^{-1} \tilde{X}' \tilde{y} = (X'PPX)^{-1} X'PPy \]
\[
(Y' \Omega^{-1} X)^{-1} Y'
\]
is the efficient estimator of \(\beta\). This is called the **Generalized Least Square (GLS)** estimator. Note that the GLS estimators are unbiased when \(E(\tilde{u} \mid \tilde{X}) = 0\). The variance of GLS estimator is

\[
\text{var}(\hat{\beta}) = \sigma^2 (X' \tilde{X})^{-1} = \sigma^2 (X' \Omega^{-1} X)^{-1}.
\]

Note that, under homoskedasticity, i.e., \(\Omega^{-1} = I\), GLS becomes OLS.

The problem is, as usual, that we don’t know \(\sigma^2 \Omega\) or \(\Sigma\). Thus we have to either assume \(\Sigma\) or estimate \(\Sigma\) empirically. An example of the former is Weighted Least Squares Estimation and an example of the later is Feasible GLS (FGLS).

Weighted Least Squares Estimation (WLS)

Consider a general case of heteroskedasticity.

\[
\text{Var}(u_i) = \sigma_i^2 = \sigma^2 \omega_i.
\]

Then,

\[
E(\tilde{u}u') = \sigma^2 \begin{bmatrix}
\omega_1 & 0 & 0 \\
0 & \omega_2 & 0 \\
0 & 0 & \omega_n
\end{bmatrix} = \sigma^2 \Omega, \quad \text{thus} \quad \Omega^{-1} = \begin{bmatrix}
\omega_1^{-1} & 0 & 0 \\
0 & \omega_2^{-1} & 0 \\
0 & 0 & \omega_n^{-1}
\end{bmatrix}.
\]

Because of \(\Omega^{-1} = P'P\), \(P\) is a n x n matrix whose \(i\)-th diagonal element is \(1/\sqrt{\omega_i}\). By pre-multiplying \(P\) on \(y\) and \(X\), we get
The OLS on \(y \) and \(X \) is called the Weighted Least Squares (WLS) because each variable is weighted by \(\sqrt{\omega} \). The question is: where can we find \(\omega \)?
Feasible GLS (FGLS)

Instead of assuming the structure of heteroskedasticity, we may estimate the structure of heteroskedasticity from OLS. This method is called Feasible GLS (FGLS). First, we estimate \(\hat{\Omega} \) from OLS, and, second, we use \(\hat{\Omega} \) instead of \(\Omega \).

\[
\hat{\beta}_{FGLS} = (X' \hat{\Omega}^{-1} X)^{-1} X' \hat{\Omega}^{-1} y
\]

There are many ways to estimate FGLS. But one flexible approach (discussed in Wooldridge page 277) is to assume that

\[
\text{var}(u \mid X) = u^2 = \sigma^2 \exp(\delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k)
\]

By taking log of the both sides and using \(\hat{u}^2 \) instead of \(u^2 \), we can estimate

\[
\log(\hat{u}^2) = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \epsilon.
\]

The predicted value from this model is \(\hat{g}_i = \log(\hat{u}_i^2) \). We then convert it by taking the exponential into \(\hat{\omega}_i = \exp(\hat{g}_i) = \exp(\log(\hat{u}_i^2)) = \hat{u}_i^2 \). We now use WLS with weights \(1/\hat{\omega}_i \) or \(1/\hat{u}_i^2 \).

Example 1

. * Estimate the log-wage model by using WAGE1.dta with WLS
. * Weight is educ

. * Generate weighted varaibles
. gen w=1/(educ)^0.5
. gen wlogwage=logwage*w
. gen wfemale=female*w
. gen weduc=educ*w
. gen wexper=exper*w
. gen wexpsq=expsq*w

. * Estimate weighted least squares (WLS) model

. reg wlogwage weduc wfemale wexper wexpsq w, noc

Source | SS df MS Number of obs = 524
---------+------------------------------ F(5, 519) = 1660.16
Model | 113.916451 5 22.7832901 Prob > F = 0.0000
Residual | 7.12253755 519 .013723579 R-squared = 0.9412
---------+------------------------------ Adj R-squared = 0.9406
Total | 121.038988 524 .230990435 Root MSE = .11715

--
 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
weduc | .080147 .006435 12.455 0.000 .0675051 .0927889
wfemale | -.3503307 .0354369 -9.886 0.000 -.4199482 -.2807133
wexper | .0367367 .0045745 8.031 0.000 .0277498 .0457236
wexpsq | -.0006319 .000099 -6.385 0.000 -.0008264 -.0004375
w | .4557085 .0912787 4.992 0.000 .2763872 .6350297
--

End of Example 1

Example 2

. * Estimate reg
. reg logwage educ female exper expsq

(Output omitted)
. predict e, residual
. gen logesq=ln(e*e)
```plaintext
.reg logesq educ female exper expsq
(output omitted)
.predict esqhat
(option xb assumed; fitted values)
.gen omega=exp(esqhat)

." Generate weighted varaibles"
.gen w=1/(omega)^0.5
.gen wlogwage=logwage*w
.gen wfemale=female*w
.gen weduc=educ*w
.gen wexper=exper*w
.gen wexpsq=expsq*w

." Estimate Feasible GLS (FGLS) model"
.reg wlogwage weduc wfemale wexper wexpsq w, noc

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 524</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>31164.1981</td>
<td>5</td>
<td>6232.83962</td>
<td>F(  5,  519) = 1569.72</td>
</tr>
<tr>
<td>Residual</td>
<td>2060.77223</td>
<td>519</td>
<td>3.97065941</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>33224.9703</td>
<td>524</td>
<td>63.406432</td>
<td>R-squared = 0.9380</td>
</tr>
</tbody>
</table>

| wlogwage | Coef.       | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|----------|-------------|-----------|-------|-------|---------------------|
| weduc    | .0828952    | .0069779  | 11.880 | 0.000 | .0691868 , .0966035 |
| wfemale  | -.2914609   | .0349884  | -8.330 | 0.000 | -.3601971 , -.2227246 |
| wexper   | .0376525    | .004497   | 8.373  | 0.000 | .0288179 , .0464872 |
| wexpsq   | -.0006592   | .0001008  | -6.540 | 0.000 | -.0008573 , -.0004612 |
| w        | .3848487    | .0950576  | 4.049  | 0.000 | .1981038 , .5715936 |
```
End of Example 2