Endogenous Variables

Consider a population model:

\[y_{it} = \alpha_{it} y_{i2} + \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + u_i \]

We call \(y_2 \) an endogenous variable when \(y_2 \) is correlated with \(u \). As we have studied earlier, \(y_2 \) would be correlated with \(u \) if (a) there are omitted variables that are correlated with \(y_2 \) and \(y_1 \), (b) \(y_2 \) is measured with errors, and (c) \(y_1 \) and \(y_2 \) are simultaneously determined (we will cover this issue later). All of these problems, we can identify the source of the problems as the correlation between the error term and one or some of the independent variables.

For all of these problems, we can apply instrumental variables (IV) estimations because instrumental variables are used to cut correlations between the error term and independent variables. To conduct IV estimations, we need to have instrumental variables (or instruments in short) that are (R1) uncorrelated with \(u \) but (R2) partially and sufficiently strongly correlated with \(y_2 \) once the other independent variables are controlled for.

It turns out that it is very difficult to find proper instruments!

In practice, we can test the second requirement (b), but we can not test the first requirement (a) because \(u \) is unobservable. To test the second requirement (b), we need to express a reduced form equation of \(y_2 \) with all of exogenous variables. Exogenous variables include all of independent variables that are not correlated with the error term and the instrumental variable, \(z \). The reduced form equation for \(y_2 \) is

\[y_2 = \delta_z z + \delta_1 x_2 + \ldots + \delta_k x_k + u \]

For the instrumental variable to satisfy the second requirement (R2), the estimated coefficient of \(z \) must be significant.

In this case, we have one endogenous variable and one instrumental variable. When we have the same number of endogenous and instrumental variables, we say the endogenous variables are just identified. When we have more instrumental variables than endogenous variables, we say the endogenous variables are over-identified. In this case,
we need to use “two stage least squares” (2SLS) estimation. We will come back to 2SLS later.

Define \(x = (y_2, 1, x_2, \ldots , x_{k-1}) \) as a 1-by-k vector, \(z = (z, 1, x_2, \ldots , x_{k-1}) \) a 1-by-k vector of all exogenous variables, \(X \) as a n-by-k matrix that includes one endogenous variable and k-1 independent variables, and \(Z \) as a n-by-k matrix that include one instrumental variable and (k-1) independent variables:

\[
X = \begin{bmatrix}
y_{12} & 1 & x_{12} & x_{13} & \ldots & x_{1k-1} \\
y_{22} & 1 & x_{22} & x_{23} & \ldots & x_{2k-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
y_{n2} & 1 & x_{n2} & x_{n3} & \ldots & x_{nk-1}
\end{bmatrix}, \quad Z = \begin{bmatrix}
z_1 & 1 & x_{12} & x_{13} & \ldots & x_{1k-1} \\
z_2 & 1 & x_{22} & x_{23} & \ldots & x_{2k-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
z_n & 1 & x_{n2} & x_{n3} & \ldots & x_{nk-1}
\end{bmatrix}.
\]

The instrumental variables (IV) estimator is

\[
\hat{\beta}_IV = (Z'X)^{-1}Z'Y
\]

Notice that we can take the inverse of \(Z'X \) because both \(Z \) and \(X \) are n-by-k matrices and \(Z'X \) is a k-by-k matrix which has full rank, k. This indicates that there is no perfect collinearity in \(Z \). The condition that \(Z'X \) has full rank of k is called the rank condition.

Problems with Small property.

The consistency of the IV estimators can be shown by using the two requirements for IVs:

\[
\hat{\beta}_IV = (Z'X)^{-1}Z'(X\beta + u) \\
= \beta + (Z'X)^{-1}Z'u \\
= \beta + (Z'X/n)^{-1}Z'u/n
\]

From the first requirement (R1), \(p \lim Z'u/n \to 0 \).

From the second requirement (R2), \(p \lim Z'X/n \to A \), where \(A = E(z'x) \).

Therefore, the IV estimator is consistent when IVs satisfy the two requirements.

A Bivariate IV model

Let’s consider a simple bivariate model:

\[
y_1 = \beta_0 + \beta_1 y_2 + u
\]

We suspect that \(y_2 \) is an endogenous variable, \(\text{cov}(y_2, u) \neq 0 \). Now, consider a variable, \(z \), which is correlated \(y_2 \) but not correlated with \(u \): \(\text{cov}(z, y_2) \neq 0 \) but \(\text{cov}(z, u) = 0 \).

Consider \(\text{cov}(z, y_1) \):

\[
\text{cov}(z, y_1) = \text{cov}(z, \beta_0 + \beta_1 y_2 + u)
\]

\[
2\]
Because \(\text{cov}(z, 1) = 0 \) and \(\text{cov}(z, u) = 0 \), we find that

\[
\beta_1 = \frac{\text{cov}(z, y_1)}{\text{cov}(z, y_2)} = \frac{1}{n}\sum_{i=1}^{n} (z_i - \bar{z})(y_{1i} - \bar{y}_1), \text{ which is}
\]

\[
= (Z'X)^{-1} Z'Y.
\]

Thus, we find the same conclusion as using the matrix form.

The problem in practice is the first requirement, \(\text{cov}(z, u) = 0 \). We can not empirically confirm this requirement because \(u \) cannot be observed. Thus, the validity of this assumption is left to economic theory or economists’ common sense.

Recent studies show that even the first requirement can be problematic when the correlation between the endogenous and instrumental variables is weak. We will discuss this later.

Example 1: Card (1995), CARD.dta.

A dummy variable grew up near a 4 year collage as an IV on \(\text{educ} \).

OLS

```
. reg lwage educ
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>58.5153536</td>
<td>1</td>
<td>58.5153536</td>
<td>F(1, 3008) = 329.54</td>
</tr>
<tr>
<td>Residual</td>
<td>534.126258</td>
<td>3008</td>
<td>.17756857</td>
<td>R-squared = 0.0987</td>
</tr>
<tr>
<td>Total</td>
<td>592.641611</td>
<td>3009</td>
<td>.196956335</td>
<td>Adj R-squared = 0.0984</td>
</tr>
</tbody>
</table>

| lwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|---|-----|---------------------|
| educ | .0520942 | .0028697 | 18.153 | 0.000 | .0464674 .057721 |
| _cons | 5.570883 | .0388295 | 143.470 | 0.000 | 5.494748 5.647017 |

Correlation between nearc4 (an IV) and educ

```
. reg educ nearc4
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>448.604204</td>
<td>1</td>
<td>448.604204</td>
<td>F(1, 3008) = 63.91</td>
</tr>
<tr>
<td>Residual</td>
<td>21113.4759</td>
<td>3008</td>
<td>7.01910767</td>
<td>R-squared = 0.0208</td>
</tr>
<tr>
<td>Total</td>
<td>21562.0801</td>
<td>3009</td>
<td>7.16586243</td>
<td>Root MSE = 2.6494</td>
</tr>
</tbody>
</table>
Thus, nearc4 satisfies the one of the two requirements to be a good candidate as an IV.

IV Estimation:

`. ivreg lwage (educ=nearc4)`

Instrumental variables (2SLS) regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-340.111443</td>
<td>1</td>
<td>-340.111443</td>
<td>F(1, 3008) = 51.17</td>
</tr>
<tr>
<td>Residual</td>
<td>932.753054</td>
<td>3008</td>
<td>.310090776</td>
<td>R-squared = .</td>
</tr>
<tr>
<td>Total</td>
<td>592.641611</td>
<td>3009</td>
<td>.196956335</td>
<td>Root MSE = .55686</td>
</tr>
</tbody>
</table>

lwage	Coef. Std. Err. t P>	t	[95% Conf. Interval]		
educ	.1880626	.0262913	7.153	0.000	.1365118 .2396134
_cons	3.767472	.3488617	10.799	0.000	3.08344 4.451504

Instrumented: educ

Instruments: nearc4

Note that you can obtain the same coefficient by estimating OLS on lwage with the predicted educ (predicted by nearc4). However, the standard error would be incorrect. In the above IV Estimation, the standard error is already corrected.

End of Example 1

The Two-Stage Least Squares Estimation

Again, let’s consider a population model:

\[y_1 = \alpha_1 y_2 + \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u \]

where \(y_2 \) is an endogenous variable. Suppose that there are m instrumental variables. Instruments, \(z = (1, x_1, \ldots, x_k, z_1, \ldots, z_m) \), are correlated with \(y_2 \). From the reduced form equation of \(y_2 \) with all exogenous variables (exogenous independent variables plus instruments), we have

\[y_2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \delta_{k+1} z_1 + \ldots + \delta_{k+m} z_m + \varepsilon \]

\[y_2 = \hat{y}_2 + \varepsilon \]
\(\hat{y}_2 \) is a linear projection of \(y_2 \) with all exogenous variables. Because \(\hat{y}_2 \) is projected with all exogenous variables that are not correlated with the error term, \(u \), in (1), \(\hat{y}_2 \) is not correlated with \(u \), while \(\epsilon \) is correlated with \(u \). Thus, we can say that by estimating \(y_2 \) with all exogenous variables, we have divided into two parts: one is correlated with \(u \) and the other is not.

The projection of \(y_2 \) with \(Z \) can be written as

\[
\hat{y}_2 = Z\hat{\delta} = Z(Z'Z)^{-1}Z'y_2
\]

When we use the two-step procedure (as we discuss later), we use this \(\hat{y}_2 \) in the place of \(y_2 \). But now, we treat \(y_2 \) as a variable in \(X \) and project \(X \) itself with \(Z \):

\[
\hat{X} = Z\hat{\Pi} = Z(Z'Z)^{-1}Z'X = P_ZX
\]

\(\hat{\Pi} \) is a \((k+m-1)\)-by-\(k \) matrix with coefficients, which should look like:

\[
\hat{\Pi} = \begin{bmatrix}
\delta_1 & 1 & 0 & 0 \\
\delta_2 & 0 & 1 & 0 \\
\delta_{k+m-1} & 0 & 0 & 0
\end{bmatrix}
\]

Thus, \(y_2 \) in \(X \) should be expressed as a linear projection, and other independent variables in \(X \) should be expressed by itself. \(P_Z = Z(Z'Z)^{-1}Z' \) is a n-by-n symmetric matrix and idempotent (i.e., \(P_Z'P_Z = P_Z \)). We use \(\hat{X} \) as instruments for \(X \) and apply the IV estimation as in

\[
\hat{\beta}_{2SLS} = (\hat{X}'X)^{-1}\hat{X}'Y
\]

\[
= (X'P_ZX)^{-1}X'P_ZY
\]

\[
= (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y \tag{2}
\]

This can be also written as

\[
\hat{\beta}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y
\]

This is the 2SLS estimator. It is called as two-stage because it looks like we take two steps by creating projected \(X \) to estimate the 2SLS estimators. We do not need to take two steps as we show in (2). We can just estimate 2SLS estimators in one step by using \(X \) and \(Z \). (This is what econometrics packages do.)

The Two-Step procedure
It is still a good idea to know how to estimate the 2SLS estimators by a two-step procedure:

Step 1: Obtain \(\hat{y}_2 \) by estimating an OLS against all of exogenous variables, including all of instruments (the first-stage regression)

Step 2: Use \(\hat{y}_2 \) in the place of \(y_2 \) to estimate \(y_1 \) against \(\hat{y}_2 \) and all of exogenous independent variables, not instruments (the second stage regression)

The estimated coefficients from the two-step procedure should exactly the same as 2SLS. However, you must be aware that the standard errors from the two-step procedure are incorrect, usually smaller than the correct ones. Thus, in practice,

avoid using predicted variables as much as you can!

Econometric packages will provide you 2SLS results based on (2). So you do not need to use the two-step procedure.

We use the first step procedure to test the second requirement for IVs. In the first stage regression, we should conduct a F-test on all instruments to see if instruments are jointly significant in the endogenous variable, \(y_2 \). As we discuss later, instruments should be strongly correlated with \(y_2 \) to have reliable 2SLS estimators.

Consistency of 2SLS

Assumption 2SLS.1: For vector \(z \), \(E(z'u) = 0 \),

where \(z = (1, x_1, \ldots, x_k, z_1, \ldots, z_m) \).

Assumption 2SLS.2: (a) rank \(E(z'z) = k+m+1 \); (b) rank \(E(z'x) = k \).

(b) is the rank condition for identification that \(z \) is sufficiently linearly related to \(x \) so that rank \(E(z'x) \) has ful column rank.

The order condition is \(k-1+m \geq k-1+h \), where \(h \) is the number of endogenous variable. Thus, the order condition indicates that we must have at least as many instruments as endogenous variables.

Under assumption 2SLS1 and 2SLS2, the 2SLS estimators in (10-5) are consistent.

Under homoskedasticity,

\[
\hat{\sigma}^2 (\hat{X}'\hat{X})^{-1} = (n-k)^{-1} \sum_{i=1}^{n} \hat{u}_i (\hat{X}'\hat{X})^{-1}
\]

is a valid estimator of the asymptotic variance of \(\hat{\beta}_{2SLS} \).
Under heteroskedasticity, the heteroskedasticity-robust (White) standard errors is

\[(\hat{X}'\hat{X})^{-1} \hat{X} \hat{\Sigma} \hat{X}' (\hat{X}'\hat{X})^{-1}\]

Here are some tests for IV estimation. See Wooldridge (Introductory Econometrics) for details.

Testing for Endogeneity

(i) Estimate the reduced form model using the endogenous variable as the dependent variable:

\[y_2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + \delta_{k+1} z_1 + \ldots + \delta_{k+m} z_m + \epsilon\]

(ii) Obtain the residual, \(\hat{\epsilon}\).

(iii) Estimate

\[y_1 = \alpha_1 y_2 + \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \hat{\delta} + u\]

(iv) If \(\hat{\delta}\) is significant, then \(y_2\) is endogenous.

Testing the Over-Identification

(i) Estimate \(\hat{\beta}_{SLS}\) and obtain \(\hat{u}\).

(ii) Regress \(\hat{u}\) on \(z\) and \(x\).

(iii) Get \(R^2\) and get \(nR^2\), which is chi-squared. If this is significantly different from zero, then at least some of the IVs are not exogenous.

Example 2: Card (1995), card.dta again.

OLS

```
. reg lwage educ exper expersq black smsa south
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>172.165615</td>
<td>6</td>
<td>28.6942691</td>
<td>F(6, 3003) = 204.93</td>
</tr>
<tr>
<td>Residual</td>
<td>420.475997</td>
<td>3003</td>
<td>.140018647</td>
<td>R-squared = 0.2905</td>
</tr>
<tr>
<td>Total</td>
<td>592.641611</td>
<td>3009</td>
<td>.196956335</td>
<td>Root MSE = 0.37419</td>
</tr>
</tbody>
</table>

| lwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|-----|----------------------|
| educ | .074009 | .0035054 | 21.113 | 0.000 | .0671357 -.0808823 |
| exper | .0835958 | .0066478 | 12.575 | 0.000 | .0705612 -.0966305 |
| expersq | -.0022409 | .0003178 | -7.050 | 0.000 | -.0028641 -.0016177 |
| black | -.1896316 | .0176266 | -10.758 | 0.000 | -.2241929 -.1550702 |
| smsa | .161423 | .0155733 | 10.365 | 0.000 | .1308876 .1919583 |
| south | -.1248615 | .0151182 | -8.259 | 0.000 | -.1545046 -.0952184 |
| _cons | 4.733664 | .0676026 | 70.022 | 0.000 | 4.601112 4.866217 |
IV Estimation: nearc2 nearc4 as IVs

```
.ivreg lwage (educ= nearc2 nearc4) exper expersq black smsa south
```

Instrumental variables (2SLS) regression

```
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F( 6, 3003) = 110.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>86.2368644</td>
<td>6</td>
<td>14.372819</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>506.404747</td>
<td>3003</td>
<td>.168632949</td>
<td>R-squared = 0.1455</td>
</tr>
<tr>
<td>Total</td>
<td>592.641611</td>
<td>3009</td>
<td>.196956335</td>
<td>Adj R-squared = 0.1438</td>
</tr>
</tbody>
</table>

-----

```
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------|-----------------|---------|--------------------|-------------------|
educ | .1608487 .0486291 3.308 0.001 .065499 .2561983 |
exper | .1192111 .0211779 5.629 0.000 .0776865 .1607358 |
expersq | -.0023052 .0003507 -6.574 0.000 -.0029928 -.0016177 |
black | -.1019727 .0526187 -1.938 0.053 -.205145 .0011996 |
smsa | .1165736 .0303135 3.846 0.000 .0571363 .1760109 |
south | -.0951187 .0234721 -4.052 0.000 -.1411418 -.0490956 |
_cons | 3.272103 .8192562 3.994 0.000 1.665743 4.878463 |
```

Instrumented: educ
Instruments: nearc2 nearc4 + exper expersq ... south

```
.ivreg lwage (educ= nearc2 nearc4 fatheduc motheduc) exper expersq black sms a south
```

Instrumental variables (2SLS) regression

```
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 2220</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F(6, 2213) = 83.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>108.419483</td>
<td>6</td>
<td>18.0699139</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>320.580001</td>
<td>2213</td>
<td>.144862178</td>
<td>R-squared = 0.2527</td>
</tr>
<tr>
<td>Total</td>
<td>428.999484</td>
<td>2219</td>
<td>.193330097</td>
<td>Adj R-squared = 0.2507</td>
</tr>
</tbody>
</table>

```
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------|-----------------|---------|--------------------|-------------------|
educ    | .1000713 .01263 7.923   0.000       .0753034    .1248392 |
exper   | .0989441 .009482 10.435  0.000       .0803496   .1175385 |
expersq | -.002449 .0004013 -6.103  0.000      -.0032359  -.0016621 |
black   | -.1504635 .0259113 -6.807  0.000      -.2012765  -.0996505 |
smsa    | .150854 .0195975 7.698  0.000       .1124226   .1892854 |
south   | -.1072406 .0180661 -5.396  0.000      -.1426688  -.0718123 |
_cons   | 4.26178 .216812 19.657  0.000       3.836604   4.686956 |
```

Instrumented: educ
Instruments: nearc2 nearc4 fatheduc motheduc + exper expersq ... south

8
IV Estimation: fatheduc motheduc as IVs

```stata
.ivreg lwage (educ= fatheduc motheduc) exper expersq black smsa south
```

Instrumental variables (2SLS) regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 2220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>108.477154</td>
<td>6</td>
<td>18.0795257</td>
<td>F(6, 2213) = 83.44</td>
</tr>
<tr>
<td>Residual</td>
<td>320.52233</td>
<td>2213</td>
<td>.144836118</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>428.999484</td>
<td>2219</td>
<td>.193330097</td>
<td>R-squared = 0.2529</td>
</tr>
</tbody>
</table>

Adj R-squared = 0.2508 Root MSE = 0.38057

| lwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|-----|--------------------------|
| educ | .099931 | .012756 | 7.834 | 0.000 | .0749161 - .124946 |
| exper | .098884 | .0095123 | 10.395 | 0.000 | .0802299 - .117538 |
| expersq | -.0024487 | .0004012 | -6.103 | 0.000 | -.0032356 - -.0016619 |
| black | -.1505902 | .0259598 | -5.801 | 0.000 | -.2014983 - -.0996822 |
| smsa | .1509271 | .0196181 | 7.693 | 0.000 | .1124553 - .1893988 |
| south | -.1072797 | .0180714 | -5.936 | 0.000 | -.1427183 - -.071841 |
| _cons | 4.26415 | .2189075 | 19.479 | 0.000 | 3.834865 - 4.693436 |

Instrumented: educ
Instruments: fatheduc motheduc + exper expersq ... south

Which ones are better?

End of Example 2

Weak Instruments

Remember the two requirements for instrumental variables to be valid: (R1) uncorrelated with \(u \) but (R2) partially and sufficiently strongly correlated with \(y_2 \) once the other independent variables are controlled for.

The first requirement is difficult to be confirmed because we cannot observe \(u \). So, we rely on economic theory or natural experiments to find instrumental variables that satisfy the first requirement. The second requirement can be checked by conducting some analyses.

One way of checking the second requirement is to estimate a regression model of endogenous variables on exogenous variables which include instrumental variables and other exogenous variables. Suppose that we have one endogenous variable, \(y_2 \), and \(m \) instrumental variables, \(z_1, \ldots, z_m \). Then estimate the following model:

\[
y_{2i} = \beta_0 + \delta_1 z_{i1} + \ldots + \delta_m z_{im} + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i. \tag{1}
\]
Then obtain a F-statistics on the estimators of the instrumental variables:

\(H_0: \delta_1 = \ldots = \delta_m = 0 \). If the F-statistics is small, then we call the instrumental variables \textit{weak}. When the instrumental variables are weak, the IV or 2SLS estimators could be inconsistent or have large standard errors.

Inconsistency

To examine how weak instruments can make IV and 2SLS estimators inconsistent, let us consider a simple bivariate model:

\[y_1 = \beta_0 + \beta_1 y_2 + u \]

In a bivariate model, we write

\[\lim \hat{\beta}_{IV} = \beta + \frac{\text{cov}(z,u)}{\text{cov}(z,y_2)} \]

because \(\text{Corr}(z,u) = \text{cov}(z,u)/[\text{sd}(z)\text{sd}(u)] \) (see Wooldridge pp714)

\[\lim \hat{\beta}_{IV} = \beta + \frac{\text{corr}(z,u)/(sd(z)sd(u))}{\text{corr}(z,y_2)/(sd(z)sd(y_2))} \]

\[\lim \hat{\beta}_{IV} = \beta + \frac{\text{corr}(z,u) \cdot \text{sd}(y_2)}{\text{corr}(z,y_2) \cdot \text{sd}(u)} \]

Thus if \(z \) is only weakly correlated with the endogenous variable, \(y_2 \), i.e., \(\text{corr}(z, y_2) \) is very small, the IV estimator could be severely biased even when the correlation between \(z \) and \(u \) is very small.

Consider now the OLS estimator of the bivariate model ignoring the endogeneity of \(y_2 \):

\[\lim \hat{\beta}_{OLS} = \beta + \frac{\text{cov}(y_2,u)}{\text{var}(y_2)} \]

\[= \beta + \frac{\text{corr}(y_2,u) \cdot \text{sd}(y_2) \cdot \text{sd}(u)}{\text{sd}(y_2)^2} \]

\[= \beta + \frac{\text{corr}(y_2,u) \cdot \text{sd}(u)}{\text{sd}(y_2)} \]

Here we have the endogenous bias. But the size of the endogenous bias could be smaller than the bias created by the weak instrument. To compare these two, let us take the ratio of these two:

\[\frac{\lim \hat{\beta}_{IV} - \beta}{\lim \hat{\beta}_{OLS} - \beta} = \frac{\text{corr}(z,u)}{\text{corr}(z,y_2) \cdot \text{corr}(y_2,u)} \]

When this ratio is larger than 1, the bias in the IV estimator is larger than the OLS estimator. When the instrumental variable is completely uncorrelated with \(u \), the bias in
the IV estimator is zero. When it has even a very small correlation with \(u \), the size of the ratio depends on the size of the denominator, which could be very small when the correlation between the instrumental variable and the endogenous variable, \(\text{corr}(z, y_z) \), is small. The implication from this simple model could be also applied on a more complicated model where there are more than one endogenous variable and one instrumental variable.

Low Precision
Weak instrumental variables can lead to large standard errors of the IV/2SLS estimators. The variance of the IV estimator is

\[
V(\hat{\beta}_{IV}) = \sigma^2 (Z'X)^{-1} Z'Z (Z'X)^{-1}.
\]

This could be rearranged as:

\[
V(\hat{\beta}_{IV}) = \sigma^2 (X'X)^{-1} XXX' (Z'X)^{-1} Z'Z (Z'X)^{-1}
\]

\[
= V(\hat{\beta}_{OLS})X'X (Z'X)^{-1} Z'Z (Z'X)^{-1}
\]

\[
= V(\hat{\beta}_{OLS})[(X'X)^{-1} Z'X]^{-1} [(Z'Z)^{-1} Z'X]^{-1}
\]

\[
= V(\hat{\beta}_{OLS})[\Pi_{z,x}]^{-1} \Pi_{x,z}^{-1}
\]

where \(\Pi_{z,x} \) and \(\Pi_{x,z} \) are projections of \(Z \) on \(X \) and \(X \) on \(Z \), respectively. If the correlations between \(Z \) and \(X \) are low, then \(\Pi_{z,x} \) and \(\Pi_{x,z} \) have low values, which would make the variance of the IV estimators large. This could be applied on the 2SLS estimators.

In empirical estimation, we often find large standard errors in the IV/2SLS estimators. This could be caused by weak instruments.

Thus, weak instrumental variables can cause inconsistency and imprecision in the IV/2SLS estimators. But how weak is weak?

A Rule of Thumb to find Weak Instruments
Staiger and Stock (1997) suggest that the F-statistics of instrumental variables in (1), of this lecture note, should be larger than 10 to ensure that the maximum bias in IV estimators to be less than 10 %. If you are willing to accept the maximum bias in IV estimators to be less than 20 %, the threshold is F-stat being larger than 5. If the number of instrumental variables is one, the F-statistics should be replaced by the t-statistics.

In practice, it is quite difficult to find valid instrumental variables that are not weak. I personally find searching for instrumental variables time-consuming and not so rewarding. One can never be sure about validness of IVs. You should look for natural experiments or randomized experiments that could be used as instrumental variables.