Problem Set 3: Solutions
Due in class on May 27

1. Question 1 (20 points)

Consider an exchange economy with \(n \) consumers, and suppose their preferences are (strictly) monotonic. Then, show that a general equilibrium allocation \(x \) is Pareto efficient.

Note: You should NOT rely on intuitive graphical analysis or MRS argument. Instead, try to give a formal proof of the first welfare theorem.

By monotonicity, budget constraints for all the consumers must be satisfied with equalities. Now, suppose \(x \) is not Pareto efficient. Then, there must exist an alternative allocation \(x' \) such that \(x'_j \geq x_j \) for \(j = 1, \ldots, n \) and \(x'_i > x_i \) for some \(i \). Pick such consumer \(i \). Her budget spent for new consumption bundle must be strictly greater than her income (otherwise contradict to \(x_i \) being an optimal choice), that is,

\[
p x'_i > p x_i = p \omega_i.
\]

For other consumers \(j \neq i \), weak version of the above inequality must hold,

\[
p x'_j \geq p \omega_j.
\]

Summing over across agents, we obtain

\[
p \sum_{j=1}^{n} x'_j > p \sum_{j=1}^{n} \omega_j.
\]

However \(\sum_{j=1}^{n} x'_j = \sum_{j=1}^{n} \omega_j \) must hold since \(x' \) is a feasible allocation, which is a contradiction.

2. Question 2 (40 points)

A firm can hire at a rental price \(r \) and labor at a wage \(w \). To produce anything at all requires one unit of capital, i.e. \(r \) is a fixed cost; this is sunk in the short run, but not sunk in the long run. If in a unit of time the firm employs \(L \) units of labor, and rents
K units of capital (in addition to the one unit needed as a fixed cost), its output Q is given by one of the following production functions:

\[Q = K^{1/4}L^{1/8} \tag{1} \]

\[Q = \min(K, L) \tag{2} \]

For each production function, answer the following questions.

(a) In the short run, the firm is committed to hire a fixed amount of capital $K(+1)$, and can vary its output Q only by employing an appropriate amount of labor L. Find algebraic expressions for the firm’s short-run total, average, and marginal cost functions.

\[\text{Firm’s short run total cost function, } STC_K(r, w, Q) \text{ is the answer of the following cost minimization problem in which the firm can only change } L. \]

\[\min_L r(1 + K) + wL \]

\[\text{s.t. } Q(K, L) = Q \]

(1) $L = \left(\frac{Q}{K^{1/4}}\right)^8 = \frac{Q^8}{K^2}, \ STC_K(r, w, Q) = r(1 + K) + w\frac{Q^8}{K^2}, \ SAC_K(r, w, Q) = \frac{r(1+K)}{Q} + w\frac{Q^7}{K^2}, \text{ and } SMC_K(r, w, Q) = 8w\frac{Q^7}{K^2}.$

(2) $L = \begin{cases} Q & \text{if } Q \leq K \\ \text{no answer} & \text{if } Q > K \end{cases}$. Since there is no solution if $Q > K$, we restrict our attention only to $Q \leq K$. Then, $STC_K(r, w, \overline{Q}) = r(1+K) + wQ$, $SAC_K(r, w, \overline{Q}) = \frac{r(1+K)}{Q} + w$, and $SMC_K(r, w, \overline{Q}) = w$.

(b) In the long run, the firm can vary both capital and labor. Find algebraic expressions for the firm’s long-run total, average, and marginal cost functions.

\[\text{Firm’s long run total cost function, } LTC(r, w, \overline{Q}) \text{ is the answer of the following cost minimization problem in which the firm can change both } L \text{ and } K. \]

\[\min_{K, L} r(1 + K) + wL \]

\[\text{s.t. } Q(K, L) = \overline{Q} \]

(1) Solving by Lagrange’s method, we obtain

\[K = Q^{8/3}\left(\frac{2w}{r}\right)^{1/3}, \ L = Q^{8/3}\left(\frac{r}{2w}\right)^{2/3}. \]
Thus,

\[\text{LTC}(r, w, Q) = r(1 + Q^{8/3}(\frac{2w}{r})^{1/3}) + wQ^{8/3}(\frac{r}{2w})^{2/3} \]
\[= r + \frac{3\sqrt[3]{2}}{2}r^{\frac{2}{3}}w^{\frac{1}{3}}Q^{\frac{2}{3}} \]

\[\text{LAC}(r, w, Q) = \frac{r}{Q} + \frac{3\sqrt[3]{2}}{2}r^{\frac{2}{3}}w^{\frac{1}{3}}Q^{\frac{2}{3}} \]
\[\text{LMC}(r, w, Q) = 4\sqrt[3]{2}r^{\frac{2}{3}}w^{\frac{1}{3}}Q^{\frac{2}{3}}. \]

(2) From the production function, the optimal inputs must be \(K = L = Q \). Therefore,

\[\text{LTC}(r, w, Q) = r(1 + Q) + wQ \]
\[\text{LAC}(r, w, Q) = r\left(1 + \frac{Q}{Q}\right) + w \]
\[\text{LMC}(r, w, Q) = r + w. \]

(c) To link the short-run and the long-run cost curves, take the short-run average cost curve, and for given \(Q \), find the \(K \) (as a function of \(Q \)) that minimizes short-run average cost. Substitute this in the short-run average cost function, reducing it to a function of \(Q, r \) and \(w \). Verify that it is the same as the long-run average cost function.

\textit{Let} \(K^*(Q) \) \textit{be the amount of} \(K \) \textit{that minimizes} \(SAC \).

(1) By FOC,

\[\frac{\partial SAC}{\partial K} = \frac{r}{Q} - 2w \frac{Q^7}{K^{6/3}} = 0 \]
\[\Rightarrow K^*(Q) = \left(\frac{2w}{r}\right)^{\frac{1}{3}}Q^{\frac{8}{3}}. \]
Substituting it into SAC_K,

$$SAC_K = \frac{r(1 + K)}{Q} + w \frac{Q^7}{K^2}$$

$$= \frac{r(1 + (\frac{2w}{r})^\frac{3}{2} Q^\frac{5}{2})}{Q} + w \frac{Q^7}{(\frac{2w}{r})^\frac{3}{2} Q^\frac{10}{3}}$$

$$= \frac{r}{Q} + \frac{3\sqrt{2}}{2} r^2 w^2 Q^\frac{5}{2} = LAC.$$

(2) Since $\frac{\partial SAC_K}{\partial K} = \frac{r}{Q}$ is always positive, $K^*(Q)$ must be the smallest K that can produce Q. That is, $K^*(Q) = Q$. Therefore, we obtain

$$SAC_{K^*} = \frac{r(1 + K^*)}{Q} + w = \frac{r(1 + Q)}{Q} + w = LAC.$$

3. Question 3 (40 points)

Ann has an endowment of 200 units of good X and 5 units of good Y. Bob has an endowment of 100 units of good X and 5 units of good Y. Answer the following questions of each of the following two cases where U_A is Ann’s utility function and U_B is Bob’s utility function:

Case 1: $U_A(X_A, Y_A) = X_A Y_A$ and $U_B(X_B, Y_B) = X_B Y_B$

Case 2: $U_A(X_A, Y_A) = X_A + 30 Y_A$ and $U_B(X_B, Y_B) = \text{min}(X_B, 30 Y_B)$

Answer the following questions algebraically but illustrate your answers in an Edgeworth box.

(a) Describe the set of efficient allocations in this economy.

(1) $Y = \frac{X}{30}$

(2) $Y = \frac{X}{30}$

(b) Describe the set of allocations which “Pareto-improve,” i.e., make both individuals better off, on the endowment allocation.

(1) $\{X, Y \mid XY > 10000 \text{ and } (300 - X)(10 - Y) > 5000\}$

(2) $\{X, Y \mid X + 30Y \geq 350 \text{ and } \text{min}(X, 30Y) \geq 200\}$

(c) Describe the “contract curve.”

Contract curve is the intersection of your answers in (a) and (b). That is,

(1) $\{X, Y \mid Y = \frac{X}{30}, XY > 10000 \text{ and } (300 - X)(10 - Y) > 5000\}$

(2) $\{X, Y \mid Y = \frac{X}{30}, X + 30Y \geq 350 \text{ and } \text{min}(X, 30Y) \geq 200\}$.

4
Find a competitive equilibrium price vector and allocation for this economy.

(1) Deriving Marshallian demand functions and plug them into market clearing condition, we obtain $P_X/P_Y = 1/30$. Therefore, the demand under equilibrium prices for each consumer is

\[
(X_A, Y_A) = (175, \frac{35}{6})
\]

\[
(X_B, Y_B) = (125, \frac{25}{6}).
\]

(2) The same as (1).